1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
use crate::core::*;

///
/// An array of indices. Supports different data types.
///
#[derive(Debug)]
pub enum Indices {
    /// Uses unsigned 8 bit integer for each index.
    U8(Vec<u8>),
    /// Uses unsigned 16 bit integer for each index.
    U16(Vec<u16>),
    /// Uses unsigned 32 bit integer for each index.
    U32(Vec<u32>),
}

impl Indices {
    ///
    /// Returns all the indices as an `u32` data type. Clones all of the indices, so do not use it too often.
    ///
    pub fn into_u32(&self) -> Vec<u32> {
        match self {
            Self::U8(ind) => ind.iter().map(|i| *i as u32).collect::<Vec<u32>>(),
            Self::U16(ind) => ind.iter().map(|i| *i as u32).collect::<Vec<u32>>(),
            Self::U32(ind) => ind.clone(),
        }
    }
}

///
/// A CPU-side version of a triangle mesh.
/// Can be constructed manually or loaded via [io](crate::io)
/// or via the utility functions for generating simple triangle meshes.
///
#[derive(Default, Debug)]
pub struct CPUMesh {
    /// Name.
    pub name: String,
    /// Name of the associated material, use this to match with [CPUMaterial::name].
    pub material_name: Option<String>,
    /// The positions of the vertices. Three contiguous floats defines a 3D position `(x, y, z)`, therefore the length must be divisable by 3.
    /// If there is no indices associated with this mesh, three contiguous positions defines a triangle, in that case, the length must also be divisable by 9.
    pub positions: Vec<f32>,
    /// The indices into the positions, normals, uvs and colors arrays which defines the three vertices of a triangle. Three contiguous indices defines a triangle, therefore the length must be divisable by 3.
    pub indices: Option<Indices>,
    /// The normals of the vertices. Three contiguous floats defines a normal `(x, y, z)`, therefore the length must be divisable by 3.
    pub normals: Option<Vec<f32>>,
    /// The tangents of the vertices, orthogonal direction to the normal.
    /// Three contiguous floats defines a tangent `(x, y, z)` and a value that specifies the handedness (either -1.0 or 1.0), therefore the length must be divisable by 4.
    pub tangents: Option<Vec<f32>>,
    /// The uv coordinates of the vertices. Two contiguous floats defines a coordinate `(u, v)`, therefore the length must be divisable by 2.
    pub uvs: Option<Vec<f32>>,
    /// The colors of the vertices. Four contiguous bytes defines a color `(r, g, b, a)`, therefore the length must be divisable by 4.
    /// The colors are assumed to be in linear space.
    pub colors: Option<Vec<u8>>,
}

impl CPUMesh {
    ///
    /// Returns the material for this mesh in the given list of materials. Returns `None` if no suitable material can be found.
    ///
    pub fn material<'a>(&self, materials: &'a [CPUMaterial]) -> Option<&'a CPUMaterial> {
        self.material_name.as_ref().and_then(|name| {
            materials
                .iter()
                .position(|mat| &mat.name == name)
                .map(|index| &materials[index])
        })
    }

    ///
    /// Transforms the mesh by the given transformation.
    ///
    pub fn transform(&mut self, transform: &Mat4) {
        for i in 0..self.positions.len() / 3 {
            let p = (transform
                * vec4(
                    self.positions[i * 3],
                    self.positions[i * 3 + 1],
                    self.positions[i * 3 + 2],
                    1.0,
                ))
            .truncate();
            self.positions[i * 3] = p.x;
            self.positions[i * 3 + 1] = p.y;
            self.positions[i * 3 + 2] = p.z;
        }
        let normal_transform = transform.invert().unwrap().transpose();

        if let Some(ref mut normals) = self.normals {
            for i in 0..normals.len() / 3 {
                let n = normal_transform
                    * vec4(normals[i * 3], normals[i * 3 + 1], normals[i * 3 + 2], 1.0);
                normals[i * 3] = n.x;
                normals[i * 3 + 1] = n.y;
                normals[i * 3 + 2] = n.z;
            }
        }

        if let Some(ref mut tangents) = self.tangents {
            for i in 0..tangents.len() / 4 {
                let t = normal_transform
                    * vec4(
                        tangents[i * 4],
                        tangents[i * 4 + 1],
                        tangents[i * 4 + 2],
                        1.0,
                    );
                tangents[i * 4] = t.x;
                tangents[i * 4 + 1] = t.y;
                tangents[i * 4 + 2] = t.z;
            }
        }
    }

    ///
    /// Returns a square mesh spanning the xy-plane with positions in the range `[-1..1]` in the x and y axes.
    ///
    pub fn square() -> Self {
        let indices = vec![0u8, 1, 2, 2, 3, 0];
        let halfsize = 1.0;
        let positions = vec![
            -halfsize, -halfsize, 0.0, halfsize, -halfsize, 0.0, halfsize, halfsize, 0.0,
            -halfsize, halfsize, 0.0,
        ];
        let normals = vec![0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0];
        let tangents = vec![
            1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0,
        ];
        let uvs = vec![0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0];
        CPUMesh {
            name: "square".to_string(),
            indices: Some(Indices::U8(indices)),
            positions,
            normals: Some(normals),
            tangents: Some(tangents),
            uvs: Some(uvs),
            ..Default::default()
        }
    }

    ///
    /// Returns a circle mesh spanning the xy-plane with radius 1 and center in `(0, 0, 0)`.
    ///
    pub fn circle(angle_subdivisions: u32) -> Self {
        let mut positions = Vec::new();
        let mut indices = Vec::new();
        let mut normals = Vec::new();
        for j in 0..angle_subdivisions {
            let angle = 2.0 * std::f32::consts::PI * j as f32 / angle_subdivisions as f32;

            positions.push(angle.cos());
            positions.push(angle.sin());
            positions.push(0.0);

            normals.push(0.0);
            normals.push(0.0);
            normals.push(1.0);
        }

        for j in 0..angle_subdivisions {
            indices.push(0);
            indices.push(j as u16);
            indices.push(((j + 1) % angle_subdivisions) as u16);
        }
        CPUMesh {
            name: "circle".to_string(),
            indices: Some(Indices::U16(indices)),
            positions,
            normals: Some(normals),
            ..Default::default()
        }
    }

    ///
    /// Returns a sphere mesh with radius 1 and center in `(0, 0, 0)`.
    ///
    pub fn sphere(angle_subdivisions: u32) -> Self {
        let mut positions = Vec::new();
        let mut indices = Vec::new();
        let mut normals = Vec::new();

        positions.push(0.0);
        positions.push(0.0);
        positions.push(1.0);

        normals.push(0.0);
        normals.push(0.0);
        normals.push(1.0);

        for j in 0..angle_subdivisions * 2 {
            let j1 = (j + 1) % (angle_subdivisions * 2);
            indices.push(0);
            indices.push((1 + j) as u16);
            indices.push((1 + j1) as u16);
        }

        for i in 0..angle_subdivisions - 1 {
            let theta = std::f32::consts::PI * (i + 1) as f32 / angle_subdivisions as f32;
            let sin_theta = theta.sin();
            let cos_theta = theta.cos();
            let i0 = 1 + i * angle_subdivisions * 2;
            let i1 = 1 + (i + 1) * angle_subdivisions * 2;

            for j in 0..angle_subdivisions * 2 {
                let phi = std::f32::consts::PI * j as f32 / angle_subdivisions as f32;
                let x = sin_theta * phi.cos();
                let y = sin_theta * phi.sin();
                let z = cos_theta;
                positions.push(x);
                positions.push(y);
                positions.push(z);

                normals.push(x);
                normals.push(y);
                normals.push(z);

                if i != angle_subdivisions - 2 {
                    let j1 = (j + 1) % (angle_subdivisions * 2);
                    indices.push((i0 + j) as u16);
                    indices.push((i1 + j1) as u16);
                    indices.push((i0 + j1) as u16);
                    indices.push((i1 + j1) as u16);
                    indices.push((i0 + j) as u16);
                    indices.push((i1 + j) as u16);
                }
            }
        }
        positions.push(0.0);
        positions.push(0.0);
        positions.push(-1.0);

        normals.push(0.0);
        normals.push(0.0);
        normals.push(-1.0);

        let i = 1 + (angle_subdivisions - 2) * angle_subdivisions * 2;
        for j in 0..angle_subdivisions * 2 {
            let j1 = (j + 1) % (angle_subdivisions * 2);
            indices.push((i + j) as u16);
            indices.push(((angle_subdivisions - 1) * angle_subdivisions * 2 + 1) as u16);
            indices.push((i + j1) as u16);
        }

        CPUMesh {
            name: "sphere".to_string(),
            indices: Some(Indices::U16(indices)),
            positions,
            normals: Some(normals),
            ..Default::default()
        }
    }

    ///
    /// Returns an axis aligned unconnected cube mesh with positions in the range `[-1..1]` in all axes.
    ///
    pub fn cube() -> Self {
        let positions = vec![
            1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0,
            1.0, -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0, -1.0,
            -1.0, 1.0, -1.0, -1.0, -1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0,
            1.0, -1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0,
            1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0,
            1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0, -1.0, -1.0, -1.0, 1.0, -1.0, -1.0,
            -1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0, -1.0, -1.0, -1.0,
        ];
        let uvs = vec![
            1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0,
            1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0,
            0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0,
            0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0,
            1.0, 1.0, 0.0, 0.0,
        ];
        let mut mesh = CPUMesh {
            positions,
            uvs: Some(uvs),
            ..Default::default()
        };
        mesh.compute_normals();
        mesh.compute_tangents().unwrap();
        mesh
    }

    ///
    /// Returns a cylinder mesh around the x-axis in the range `[0..1]` and with radius 1.
    ///
    pub fn cylinder(angle_subdivisions: u32) -> Self {
        let length_subdivisions = 1;
        let mut positions = Vec::new();
        let mut indices = Vec::new();
        for i in 0..length_subdivisions + 1 {
            let x = i as f32 / length_subdivisions as f32;
            for j in 0..angle_subdivisions {
                let angle = 2.0 * std::f32::consts::PI * j as f32 / angle_subdivisions as f32;

                positions.push(x);
                positions.push(angle.cos());
                positions.push(angle.sin());
            }
        }
        for i in 0..length_subdivisions {
            for j in 0..angle_subdivisions {
                indices.push((i * angle_subdivisions + j) as u16);
                indices.push((i * angle_subdivisions + (j + 1) % angle_subdivisions) as u16);
                indices.push(((i + 1) * angle_subdivisions + (j + 1) % angle_subdivisions) as u16);

                indices.push((i * angle_subdivisions + j) as u16);
                indices.push(((i + 1) * angle_subdivisions + (j + 1) % angle_subdivisions) as u16);
                indices.push(((i + 1) * angle_subdivisions + j) as u16);
            }
        }
        let mut mesh = Self {
            name: "cylinder".to_string(),
            positions,
            indices: Some(Indices::U16(indices)),
            ..Default::default()
        };
        mesh.compute_normals();
        mesh
    }

    ///
    /// Returns a cone mesh around the x-axis in the range `[0..1]` and with radius 1 at -1.0.
    ///
    pub fn cone(angle_subdivisions: u32) -> Self {
        let length_subdivisions = 1;
        let mut positions = Vec::new();
        let mut indices = Vec::new();
        for i in 0..length_subdivisions + 1 {
            let x = i as f32 / length_subdivisions as f32;
            for j in 0..angle_subdivisions {
                let angle = 2.0 * std::f32::consts::PI * j as f32 / angle_subdivisions as f32;

                positions.push(x);
                positions.push(angle.cos() * (1.0 - x));
                positions.push(angle.sin() * (1.0 - x));
            }
        }
        for i in 0..length_subdivisions {
            for j in 0..angle_subdivisions {
                indices.push((i * angle_subdivisions + j) as u16);
                indices.push((i * angle_subdivisions + (j + 1) % angle_subdivisions) as u16);
                indices.push(((i + 1) * angle_subdivisions + (j + 1) % angle_subdivisions) as u16);

                indices.push((i * angle_subdivisions + j) as u16);
                indices.push(((i + 1) * angle_subdivisions + (j + 1) % angle_subdivisions) as u16);
                indices.push(((i + 1) * angle_subdivisions + j) as u16);
            }
        }
        let mut mesh = Self {
            name: "cone".to_string(),
            positions,
            indices: Some(Indices::U16(indices)),
            ..Default::default()
        };
        mesh.compute_normals();
        mesh
    }

    ///
    /// Returns an arrow mesh around the x-axis in the range `[0..1]` and with radius 1.
    /// The tail length and radius should be in the range `]0..1[`.
    ///
    pub fn arrow(tail_length: f32, tail_radius: f32, angle_subdivisions: u32) -> Self {
        let mut arrow = Self::cylinder(angle_subdivisions);
        arrow.transform(&Mat4::from_nonuniform_scale(
            tail_length,
            tail_radius,
            tail_radius,
        ));
        arrow.name = "arrow".to_string();
        let mut cone = Self::cone(angle_subdivisions);
        cone.transform(
            &(Mat4::from_translation(vec3(tail_length, 0.0, 0.0))
                * Mat4::from_nonuniform_scale(1.0 - tail_length, 1.0, 1.0)),
        );
        let mut indices = arrow.indices.unwrap().into_u32();
        let cone_indices = cone.indices.unwrap().into_u32();
        let offset = indices.iter().max().unwrap() + 1;
        indices.extend(cone_indices.iter().map(|i| i + offset));
        arrow.indices = Some(Indices::U16(indices.iter().map(|i| *i as u16).collect()));

        arrow.positions.extend(cone.positions);
        arrow
            .normals
            .as_mut()
            .unwrap()
            .extend(cone.normals.as_ref().unwrap());
        arrow
    }

    ///
    /// Computes the per vertex normals and updates the normals of the mesh.
    /// It will override the current normals if they already exist.
    ///
    pub fn compute_normals(&mut self) {
        let mut normals = vec![0.0f32; self.positions.len()];
        self.for_each_triangle(|i0, i1, i2| {
            let p0 = self.position(i0);
            let p1 = self.position(i1);
            let p2 = self.position(i2);
            let normal = (p1 - p0).cross(p2 - p0);
            normals[i0 * 3] += normal.x;
            normals[i0 * 3 + 1] += normal.y;
            normals[i0 * 3 + 2] += normal.z;
            normals[i1 * 3] += normal.x;
            normals[i1 * 3 + 1] += normal.y;
            normals[i1 * 3 + 2] += normal.z;
            normals[i2 * 3] += normal.x;
            normals[i2 * 3 + 1] += normal.y;
            normals[i2 * 3 + 2] += normal.z;
        });

        self.for_each_vertex(|i| {
            let normal = vec3(normals[3 * i], normals[3 * i + 1], normals[3 * i + 2]).normalize();
            normals[3 * i] = normal.x;
            normals[3 * i + 1] = normal.y;
            normals[3 * i + 2] = normal.z;
        });
        self.normals = Some(normals);
    }

    ///
    /// Computes the per vertex tangents and updates the tangents of the mesh.
    /// It will override the current tangents if they already exist.
    ///
    pub fn compute_tangents(&mut self) -> ThreeDResult<()> {
        if self.normals.is_none() || self.uvs.is_none() {
            Err(CoreError::FailedComputingTangents)?;
        }
        let mut tan1 = vec![vec3(0.0, 0.0, 0.0); self.positions.len() / 3];
        let mut tan2 = vec![vec3(0.0, 0.0, 0.0); self.positions.len() / 3];

        self.for_each_triangle(|i0, i1, i2| {
            let a = self.position(i0);
            let b = self.position(i1);
            let c = self.position(i2);
            let uva = self.uv(i0).unwrap();
            let uvb = self.uv(i1).unwrap();
            let uvc = self.uv(i2).unwrap();

            let ba = b - a;
            let ca = c - a;

            let uvba = uvb - uva;
            let uvca = uvc - uva;

            let d = uvba.x * uvca.y - uvca.x * uvba.y;
            if d.abs() > 0.00001 {
                let r = 1.0 / d;
                let sdir = (ba * uvca.y - ca * uvba.y) * r;
                let tdir = (ca * uvba.x - ba * uvca.x) * r;
                tan1[i0] += sdir;
                tan1[i1] += sdir;
                tan1[i2] += sdir;
                tan2[i0] += tdir;
                tan2[i1] += tdir;
                tan2[i2] += tdir;
            }
        });

        let mut tangents = vec![0.0f32; 4 * self.positions.len() / 3];
        self.for_each_vertex(|index| {
            let normal = self.normal(index).unwrap();
            let t = tan1[index];
            let tangent = (t - normal * normal.dot(t)).normalize();
            let handedness = if normal.cross(tangent).dot(tan2[index]) < 0.0 {
                1.0
            } else {
                -1.0
            };
            tangents[index * 4] = tangent.x;
            tangents[index * 4 + 1] = tangent.y;
            tangents[index * 4 + 2] = tangent.z;
            tangents[index * 4 + 3] = handedness;
        });

        self.tangents = Some(tangents);
        Ok(())
    }

    ///
    ///  Iterates over all vertices in this mesh and calls the callback function with the index for each vertex.
    ///
    pub fn for_each_vertex(&self, mut callback: impl FnMut(usize)) {
        for i in 0..self.positions.len() / 3 {
            callback(i);
        }
    }

    ///
    /// Iterates over all triangles in this mesh and calls the callback function with the three indices, one for each vertex in the triangle.
    ///
    pub fn for_each_triangle(&self, mut callback: impl FnMut(usize, usize, usize)) {
        match self.indices {
            Some(Indices::U8(ref indices)) => {
                for face in 0..indices.len() / 3 {
                    let index0 = indices[face * 3] as usize;
                    let index1 = indices[face * 3 + 1] as usize;
                    let index2 = indices[face * 3 + 2] as usize;
                    callback(index0, index1, index2);
                }
            }
            Some(Indices::U16(ref indices)) => {
                for face in 0..indices.len() / 3 {
                    let index0 = indices[face * 3] as usize;
                    let index1 = indices[face * 3 + 1] as usize;
                    let index2 = indices[face * 3 + 2] as usize;
                    callback(index0, index1, index2);
                }
            }
            Some(Indices::U32(ref indices)) => {
                for face in 0..indices.len() / 3 {
                    let index0 = indices[face * 3] as usize;
                    let index1 = indices[face * 3 + 1] as usize;
                    let index2 = indices[face * 3 + 2] as usize;
                    callback(index0, index1, index2);
                }
            }
            None => {
                for face in 0..self.positions.len() / 9 {
                    callback(face * 3, face * 3 + 1, face * 3 + 2);
                }
            }
        }
    }

    ///
    /// Returns the position of the vertex with the given index.
    ///
    pub fn position(&self, vertex_index: usize) -> Vec3 {
        vec3(
            self.positions[3 * vertex_index],
            self.positions[3 * vertex_index + 1],
            self.positions[3 * vertex_index + 2],
        )
    }

    ///
    /// Returns the normal of the vertex with the given index.
    ///
    pub fn normal(&self, vertex_index: usize) -> Option<Vec3> {
        self.normals.as_ref().map(|normals| {
            vec3(
                normals[3 * vertex_index],
                normals[3 * vertex_index + 1],
                normals[3 * vertex_index + 2],
            )
        })
    }

    ///
    /// Returns the uv coordinates of the vertex with the given index.
    ///
    pub fn uv(&self, vertex_index: usize) -> Option<Vec2> {
        self.uvs
            .as_ref()
            .map(|uvs| vec2(uvs[2 * vertex_index], uvs[2 * vertex_index + 1]))
    }

    ///
    /// Computes the axis aligned bounding box of the mesh.
    ///
    pub fn compute_aabb(&self) -> AxisAlignedBoundingBox {
        AxisAlignedBoundingBox::new_with_positions(&self.positions)
    }

    ///
    /// Returns an error if the mesh is not valid.
    ///
    pub fn validate(&self) -> ThreeDResult<()> {
        if let Some(ref indices) = self.indices {
            let index_count = match indices {
                Indices::U8(ind) => ind.len(),
                Indices::U16(ind) => ind.len(),
                Indices::U32(ind) => ind.len(),
            };
            if index_count % 3 != 0 {
                Err(CoreError::InvalidBufferLength(
                    "index".to_string(),
                    index_count,
                ))?;
            }
            if self.positions.len() % 3 != 0 {
                Err(CoreError::InvalidBufferLength(
                    "position".to_string(),
                    index_count,
                ))?;
            }
            if let Some(ref data) = self.normals {
                if data.len() % 3 != 0 {
                    Err(CoreError::InvalidBufferLength(
                        "normal".to_string(),
                        index_count,
                    ))?;
                }
            }
            if let Some(ref data) = self.colors {
                if data.len() % 4 != 0 {
                    Err(CoreError::InvalidBufferLength(
                        "color".to_string(),
                        index_count,
                    ))?;
                }
            }
            if let Some(ref data) = self.uvs {
                if data.len() % 2 != 0 {
                    Err(CoreError::InvalidBufferLength(
                        "uv coordinate".to_string(),
                        index_count,
                    ))?;
                }
            }
            if cfg!(debug) {
                let indices_valid = match indices {
                    Indices::U8(ind) => {
                        let len = self.positions.len();
                        ind.iter().all(|&i| (i as usize) < len)
                    }
                    Indices::U16(ind) => {
                        let len = self.positions.len();
                        ind.iter().all(|&i| (i as usize) < len)
                    }
                    Indices::U32(ind) => {
                        let len = self.positions.len();
                        ind.iter().all(|&i| (i as usize) < len)
                    }
                };
                if !indices_valid {
                    Err(CoreError::InvalidIndexBuffer(self.positions.len()))?;
                }
            }
        } else {
            if self.positions.len() % 9 != 0 {
                Err(CoreError::InvalidPositionBuffer(self.positions.len()))?;
            }
        };
        Ok(())
    }
}