1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
use std::cmp;
use super::*;
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct AaRect {
x: i64,
y: i64,
width: i64,
height: i64,
}
impl AaRect {
pub fn new((x, y): (i32, i32), (width, height): (u32, u32)) -> Self {
let (x, y) = (x as i64, y as i64);
let (width, height) = (width as i64, height as i64);
AaRect {
x,
y,
width,
height,
}
}
pub fn contains_point(&self, x: i64, y: i64) -> bool {
x >= self.x && x <= self.x + self.width && y >= self.y && y <= self.y + self.height
}
pub fn get_overlapping_area(&self, other: &Self) -> i64 {
let x_overlap = cmp::max(
0,
cmp::min(self.x + self.width, other.x + other.width) - cmp::max(self.x, other.x),
);
let y_overlap = cmp::max(
0,
cmp::min(self.y + self.height, other.y + other.height) - cmp::max(self.y, other.y),
);
x_overlap * y_overlap
}
}
#[derive(Debug, Default)]
pub struct TranslatedCoords {
pub x_rel_root: c_int,
pub y_rel_root: c_int,
pub child: ffi::Window,
}
#[derive(Debug, Default)]
pub struct Geometry {
pub root: ffi::Window,
pub x_rel_parent: c_int,
pub y_rel_parent: c_int,
pub width: c_uint,
pub height: c_uint,
pub border: c_uint,
pub depth: c_uint,
}
#[derive(Debug, Clone)]
pub struct FrameExtents {
pub left: c_ulong,
pub right: c_ulong,
pub top: c_ulong,
pub bottom: c_ulong,
}
impl FrameExtents {
pub fn new(left: c_ulong, right: c_ulong, top: c_ulong, bottom: c_ulong) -> Self {
FrameExtents {
left,
right,
top,
bottom,
}
}
pub fn from_border(border: c_ulong) -> Self {
Self::new(border, border, border, border)
}
}
#[derive(Debug, Clone)]
pub struct LogicalFrameExtents {
pub left: f64,
pub right: f64,
pub top: f64,
pub bottom: f64,
}
#[derive(Debug, Clone, PartialEq)]
pub enum FrameExtentsHeuristicPath {
Supported,
UnsupportedNested,
UnsupportedBordered,
}
#[derive(Debug, Clone)]
pub struct FrameExtentsHeuristic {
pub frame_extents: FrameExtents,
pub heuristic_path: FrameExtentsHeuristicPath,
}
impl FrameExtentsHeuristic {
pub fn inner_pos_to_outer(&self, x: i32, y: i32) -> (i32, i32) {
use self::FrameExtentsHeuristicPath::*;
if self.heuristic_path != UnsupportedBordered {
(
x - self.frame_extents.left as i32,
y - self.frame_extents.top as i32,
)
} else {
(x, y)
}
}
pub fn inner_size_to_outer(&self, width: u32, height: u32) -> (u32, u32) {
(
width.saturating_add(
self.frame_extents
.left
.saturating_add(self.frame_extents.right) as u32,
),
height.saturating_add(
self.frame_extents
.top
.saturating_add(self.frame_extents.bottom) as u32,
),
)
}
}
impl XConnection {
pub fn translate_coords(
&self,
window: ffi::Window,
root: ffi::Window,
) -> Result<TranslatedCoords, XError> {
let mut coords = TranslatedCoords::default();
unsafe {
(self.xlib.XTranslateCoordinates)(
self.display,
window,
root,
0,
0,
&mut coords.x_rel_root,
&mut coords.y_rel_root,
&mut coords.child,
);
}
self.check_errors()?;
Ok(coords)
}
pub fn get_geometry(&self, window: ffi::Window) -> Result<Geometry, XError> {
let mut geometry = Geometry::default();
let _status = unsafe {
(self.xlib.XGetGeometry)(
self.display,
window,
&mut geometry.root,
&mut geometry.x_rel_parent,
&mut geometry.y_rel_parent,
&mut geometry.width,
&mut geometry.height,
&mut geometry.border,
&mut geometry.depth,
)
};
self.check_errors()?;
Ok(geometry)
}
fn get_frame_extents(&self, window: ffi::Window) -> Option<FrameExtents> {
let extents_atom = unsafe { self.get_atom_unchecked(b"_NET_FRAME_EXTENTS\0") };
if !hint_is_supported(extents_atom) {
return None;
}
let extents: Option<Vec<c_ulong>> = self
.get_property(window, extents_atom, ffi::XA_CARDINAL)
.ok();
extents.and_then(|extents| {
if extents.len() >= 4 {
Some(FrameExtents {
left: extents[0],
right: extents[1],
top: extents[2],
bottom: extents[3],
})
} else {
None
}
})
}
pub fn is_top_level(&self, window: ffi::Window, root: ffi::Window) -> Option<bool> {
let client_list_atom = unsafe { self.get_atom_unchecked(b"_NET_CLIENT_LIST\0") };
if !hint_is_supported(client_list_atom) {
return None;
}
let client_list: Option<Vec<ffi::Window>> = self
.get_property(root, client_list_atom, ffi::XA_WINDOW)
.ok();
client_list.map(|client_list| client_list.contains(&window))
}
fn get_parent_window(&self, window: ffi::Window) -> Result<ffi::Window, XError> {
let parent = unsafe {
let mut root = 0;
let mut parent = 0;
let mut children: *mut ffi::Window = ptr::null_mut();
let mut nchildren = 0;
let _status = (self.xlib.XQueryTree)(
self.display,
window,
&mut root,
&mut parent,
&mut children,
&mut nchildren,
);
if children != ptr::null_mut() {
(self.xlib.XFree)(children as *mut _);
}
parent
};
self.check_errors().map(|_| parent)
}
fn climb_hierarchy(
&self,
window: ffi::Window,
root: ffi::Window,
) -> Result<ffi::Window, XError> {
let mut outer_window = window;
loop {
let candidate = self.get_parent_window(outer_window)?;
if candidate == root {
break;
}
outer_window = candidate;
}
Ok(outer_window)
}
pub fn get_frame_extents_heuristic(
&self,
window: ffi::Window,
root: ffi::Window,
) -> FrameExtentsHeuristic {
use self::FrameExtentsHeuristicPath::*;
let (inner_y_rel_root, child) = {
let coords = self
.translate_coords(window, root)
.expect("Failed to translate window coordinates");
(coords.y_rel_root, coords.child)
};
let (width, height, border) = {
let inner_geometry = self
.get_geometry(window)
.expect("Failed to get inner window geometry");
(
inner_geometry.width,
inner_geometry.height,
inner_geometry.border,
)
};
let nested = !(window == child || self.is_top_level(child, root) == Some(true));
if let Some(mut frame_extents) = self.get_frame_extents(window) {
if !nested {
frame_extents = FrameExtents::new(0, 0, 0, 0);
}
FrameExtentsHeuristic {
frame_extents,
heuristic_path: Supported,
}
} else if nested {
let outer_window = self
.climb_hierarchy(window, root)
.expect("Failed to climb window hierarchy");
let (outer_y, outer_width, outer_height) = {
let outer_geometry = self
.get_geometry(outer_window)
.expect("Failed to get outer window geometry");
(
outer_geometry.y_rel_parent,
outer_geometry.width,
outer_geometry.height,
)
};
let diff_x = outer_width.saturating_sub(width);
let diff_y = outer_height.saturating_sub(height);
let offset_y = inner_y_rel_root.saturating_sub(outer_y) as c_uint;
let left = diff_x / 2;
let right = left;
let top = offset_y;
let bottom = diff_y.saturating_sub(offset_y);
let frame_extents =
FrameExtents::new(left.into(), right.into(), top.into(), bottom.into());
FrameExtentsHeuristic {
frame_extents,
heuristic_path: UnsupportedNested,
}
} else {
let frame_extents = FrameExtents::from_border(border.into());
FrameExtentsHeuristic {
frame_extents,
heuristic_path: UnsupportedBordered,
}
}
}
}