1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
use crate::core::*;
use crate::renderer::*;
use std::rc::Rc;

///
/// A physically-based material that renders a [Shadable] object in an approximate correct physical manner based on Physically Based Rendering (PBR).
/// This material is affected by lights.
///
#[derive(Clone)]
pub struct PhysicalMaterial {
    /// Name. Used for matching geometry and material.
    pub name: String,
    /// Albedo base color, also called diffuse color. Assumed to be in linear color space.
    pub albedo: Color,
    /// Texture with albedo base colors, also called diffuse color. Assumed to be in sRGB with or without an alpha channel.
    pub albedo_texture: Option<Rc<Texture2D<u8>>>,
    /// A value in the range `[0..1]` specifying how metallic the material is.
    pub metallic: f32,
    /// A value in the range `[0..1]` specifying how rough the material surface is.
    pub roughness: f32,
    /// Texture containing the metallic and roughness parameters which are multiplied with the [Self::metallic] and [Self::roughness] values in the shader.
    /// The metallic values are sampled from the blue channel and the roughness from the green channel.
    pub metallic_roughness_texture: Option<Rc<Texture2D<u8>>>,
    /// A scalar multiplier controlling the amount of occlusion applied from the [Self::occlusion_texture]. A value of 0.0 means no occlusion. A value of 1.0 means full occlusion.
    pub occlusion_strength: f32,
    /// An occlusion map. Higher values indicate areas that should receive full indirect lighting and lower values indicate no indirect lighting.
    /// The occlusion values are sampled from the red channel.
    pub occlusion_texture: Option<Rc<Texture2D<u8>>>,
    /// A scalar multiplier applied to each normal vector of the [Self::normal_texture].
    pub normal_scale: f32,
    /// A tangent space normal map, also known as bump map.
    pub normal_texture: Option<Rc<Texture2D<u8>>>,
    /// Render states used when the color is opaque (has a maximal alpha value).
    pub opaque_render_states: RenderStates,
    /// Render states used when the color is transparent (does not have a maximal alpha value).
    pub transparent_render_states: RenderStates,

    pub emissive: Color,
    pub emissive_texture: Option<Rc<Texture2D<u8>>>,
}

impl PhysicalMaterial {
    ///
    /// Constructs a new physical material from a [CPUMaterial].
    /// If the input contains an [CPUMaterial::occlusion_metallic_roughness_texture], this texture is used for both
    /// [PhysicalMaterial::metallic_roughness_texture] and [PhysicalMaterial::occlusion_texture] while any [CPUMaterial::metallic_roughness_texture] or [CPUMaterial::occlusion_texture] are ignored.
    ///
    pub fn new(context: &Context, cpu_material: &CPUMaterial) -> ThreeDResult<Self> {
        let albedo_texture = if let Some(ref cpu_texture) = cpu_material.albedo_texture {
            Some(Rc::new(Texture2D::new(&context, cpu_texture)?))
        } else {
            None
        };
        let metallic_roughness_texture =
            if let Some(ref cpu_texture) = cpu_material.occlusion_metallic_roughness_texture {
                Some(Rc::new(Texture2D::new(&context, cpu_texture)?))
            } else {
                if let Some(ref cpu_texture) = cpu_material.metallic_roughness_texture {
                    Some(Rc::new(Texture2D::new(&context, cpu_texture)?))
                } else {
                    None
                }
            };
        let occlusion_texture = if cpu_material.occlusion_metallic_roughness_texture.is_some() {
            metallic_roughness_texture.clone()
        } else {
            if let Some(ref cpu_texture) = cpu_material.occlusion_texture {
                Some(Rc::new(Texture2D::new(&context, cpu_texture)?))
            } else {
                None
            }
        };
        let normal_texture = if let Some(ref cpu_texture) = cpu_material.normal_texture {
            Some(Rc::new(Texture2D::new(&context, cpu_texture)?))
        } else {
            None
        };
        let emissive_texture = if let Some(ref cpu_texture) = cpu_material.emissive_texture {
            Some(Rc::new(Texture2D::new(&context, cpu_texture)?))
        } else {
            None
        };
        Ok(Self {
            name: cpu_material.name.clone(),
            albedo: cpu_material.albedo,
            albedo_texture,
            metallic: cpu_material.metallic,
            roughness: cpu_material.roughness,
            metallic_roughness_texture,
            normal_texture,
            normal_scale: cpu_material.normal_scale,
            occlusion_texture,
            occlusion_strength: cpu_material.occlusion_strength,
            opaque_render_states: RenderStates::default(),
            transparent_render_states: RenderStates {
                write_mask: WriteMask::COLOR,
                blend: Blend::TRANSPARENCY,
                ..Default::default()
            },
            emissive: cpu_material.emissive,
            emissive_texture,
        })
    }
}

impl Material for PhysicalMaterial {
    fn fragment_shader_source(&self, use_vertex_colors: bool, lights: &Lights) -> String {
        let mut output = lights.fragment_shader_source();
        if self.albedo_texture.is_some()
            || self.metallic_roughness_texture.is_some()
            || self.normal_texture.is_some()
            || self.occlusion_texture.is_some()
            || self.emissive_texture.is_some()
        {
            output.push_str("in vec2 uvs;\n");
            if self.albedo_texture.is_some() {
                output.push_str("#define USE_ALBEDO_TEXTURE;\n");
            }
            if self.metallic_roughness_texture.is_some() {
                output.push_str("#define USE_METALLIC_ROUGHNESS_TEXTURE;\n");
            }
            if self.occlusion_texture.is_some() {
                output.push_str("#define USE_OCCLUSION_TEXTURE;\n");
            }
            if self.normal_texture.is_some() {
                output.push_str("#define USE_NORMAL_TEXTURE;\nin vec3 tang;\nin vec3 bitang;\n");
            }
            if self.emissive_texture.is_some() {
                output.push_str("#define USE_EMISSIVE_TEXTURE;\n");
            }
        }
        if use_vertex_colors {
            output.push_str("#define USE_VERTEX_COLORS\nin vec4 col;\n");
        }
        output.push_str(include_str!("shaders/physical_material.frag"));
        output
    }
    fn use_uniforms(
        &self,
        program: &Program,
        camera: &Camera,
        lights: &Lights,
    ) -> ThreeDResult<()> {
        lights.use_uniforms(program, camera)?;
        program.use_uniform_float("metallic", &self.metallic)?;
        program.use_uniform_float("roughness", &self.roughness)?;
        program.use_uniform_vec4("albedo", &self.albedo.to_vec4())?;
        if program.requires_uniform("emissive") {
            program.use_uniform_vec3("emissive", &self.emissive.to_vec3())?;
        }
        if let Some(ref texture) = self.albedo_texture {
            program.use_texture("albedoTexture", texture.as_ref())?;
        }
        if let Some(ref texture) = self.metallic_roughness_texture {
            program.use_texture("metallicRoughnessTexture", texture.as_ref())?;
        }
        if let Some(ref texture) = self.occlusion_texture {
            program.use_uniform_float("occlusionStrength", &self.occlusion_strength)?;
            program.use_texture("occlusionTexture", texture.as_ref())?;
        }
        if let Some(ref texture) = self.normal_texture {
            program.use_uniform_float("normalScale", &self.normal_scale)?;
            program.use_texture("normalTexture", texture.as_ref())?;
        }
        if program.requires_uniform("emissiveTexture") {
            if let Some(ref texture) = self.emissive_texture {
                program.use_texture("emissiveTexture", texture.as_ref())?;
            }
        }
        Ok(())
    }

    fn render_states(&self) -> RenderStates {
        if self.is_transparent() {
            self.transparent_render_states
        } else {
            self.opaque_render_states
        }
    }
    fn is_transparent(&self) -> bool {
        self.albedo.a != 255
            || self
                .albedo_texture
                .as_ref()
                .map(|t| t.is_transparent())
                .unwrap_or(false)
    }
}

impl Default for PhysicalMaterial {
    fn default() -> Self {
        Self {
            name: "default".to_string(),
            albedo: Color::WHITE,
            albedo_texture: None,
            metallic: 0.0,
            roughness: 1.0,
            metallic_roughness_texture: None,
            normal_texture: None,
            normal_scale: 1.0,
            occlusion_texture: None,
            occlusion_strength: 1.0,
            opaque_render_states: RenderStates::default(),
            transparent_render_states: RenderStates {
                write_mask: WriteMask::COLOR,
                blend: Blend::TRANSPARENCY,
                ..Default::default()
            },
            emissive: Color::BLACK,
            emissive_texture: None,
        }
    }
}