1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
//! Optimized division algorithms for u128.
//!
//! The code in this module is derived off of `dtolnay/itoa`
//! and Rust's compiler-builtins crate. This copies a specific
//! path of LLVM's `__udivmodti4` intrinsic, which does division/
//! modulus for u128 in a single step. Rust implements both division
//! and modulus in terms of this intrinsic, but calls the intrinsic
//! twice for subsequent division and modulus operations on the same
//! dividend/divisor, leading to significant performance overhead.
//!
//! This module calculates the optimal divisors for each radix,
//! and exports a general-purpose division algorithm for u128 where
//! the divisor can fit in a u64.
//!
//! This implementation is derived from dtolnay/itoa, which can be found here:
//! https://github.com/dtolnay/itoa/blob/master/src/udiv128.rs
//!
//! This implementation is also derived from Rust's compiler-builtins crate,
//! which can be found here:
//! https://github.com/rust-lang-nursery/compiler-builtins/blob/master/src/int/udiv.rs
//!
//! Licensing for this module may be under the MIT or Illinois license
//! (a BSD-like license), and may be found here:
//! https://github.com/rust-lang-nursery/compiler-builtins/blob/master/LICENSE.TXT
// Get the divisor for optimized 128-bit division.
// Returns the divisor, the number of digits processed, and the
// number of leading zeros in the divisor.
//
// These values were calculated using the following script:
//
// ```text
// import math
//
// u64_max = 2**64 - 1
// u128_max = 2**128-1
//
// def is_valid(x):
// return (
// x <= u64_max
// and (u128_max / (x**2)) < x
// )
//
// def find_pow(radix):
// start_pow = int(math.floor(math.log(u64_max, radix))) - 1
// while is_valid(radix**start_pow):
// start_pow += 1
// return start_pow - 1
//
// for radix in range(2, 37):
// power = find_pow(radix)
// print(radix, radix**power, power)
// ```
#[cfg(feature = "radix")]
#[inline]
pub(crate) fn u128_divisor(radix: u32) -> (u64, usize, u32) {
match radix {
2 => (9223372036854775808, 63, 0), // 2^63
3 => (12157665459056928801, 40, 0), // 3^40
4 => (4611686018427387904, 31, 1), // 4^31
5 => (7450580596923828125, 27, 1), // 5^27
6 => (4738381338321616896, 24, 1), // 6^24
7 => (3909821048582988049, 22, 2), // 7^22
8 => (9223372036854775808, 21, 0), // 8^21
9 => (12157665459056928801, 20, 0), // 9^20
10 => (10000000000000000000, 19, 0), // 10^19
11 => (5559917313492231481, 18, 1), // 11^18
12 => (2218611106740436992, 17, 3), // 12^17
13 => (8650415919381337933, 17, 1), // 13^17
14 => (2177953337809371136, 16, 3), // 14^16
15 => (6568408355712890625, 16, 1), // 15^16
16 => (1152921504606846976, 15, 3), // 16^15
17 => (2862423051509815793, 15, 2), // 17^15
18 => (6746640616477458432, 15, 1), // 18^15
19 => (15181127029874798299, 15, 0), // 19^15
20 => (1638400000000000000, 14, 3), // 20^14
21 => (3243919932521508681, 14, 2), // 21^14
22 => (6221821273427820544, 14, 1), // 22^14
23 => (11592836324538749809, 14, 0), // 23^14
24 => (876488338465357824, 13, 4), // 24^13
25 => (1490116119384765625, 13, 3), // 25^13
26 => (2481152873203736576, 13, 2), // 26^13
27 => (4052555153018976267, 13, 2), // 27^13
28 => (6502111422497947648, 13, 1), // 28^13
29 => (10260628712958602189, 13, 0), // 29^13
30 => (15943230000000000000, 13, 0), // 30^13
31 => (787662783788549761, 12, 4), // 31^12
32 => (1152921504606846976, 12, 3), // 32^12
33 => (1667889514952984961, 12, 3), // 33^12
34 => (2386420683693101056, 12, 2), // 34^12
35 => (3379220508056640625, 12, 2), // 35^12
36 => (4738381338321616896, 12, 1), // 36^12
_ => unreachable!(),
}
}
// Get the divisor for optimized 128-bit division.
// Returns the divisor, the number of digits processed, and the
// number of leading zeros in the divisor.
#[cfg(not(feature = "radix"))]
#[inline]
#[allow(dead_code)]
pub(crate) fn u128_divisor(_: u32) -> (u64, usize, u32) {
(10000000000000000000, 19, 0) // 10^19
}
// Optimized division/remainder algorithm for u128.
// This is because the codegen for u128 divrem is very inefficient in Rust,
// calling both `__udivmodti4` twice internally, rather than a single time.
#[inline]
pub(crate) fn u128_divrem(n: u128, d: u64, d_cltz: u32) -> (u128, u64) {
// Ensure we have the correct number of leading zeros passed.
debug_assert_eq!(d_cltz, d.leading_zeros());
// Optimize if we can divide using u64 first.
let high = (n >> 64) as u64;
if high == 0 {
let low = n as u64;
return ((low / d) as u128, low % d);
}
// sr = 1 + u64::BITS + d.leading_zeros() - high.leading_zeros();
let sr = 65 + d_cltz - high.leading_zeros();
// 1 <= sr <= u64::BITS - 1
let mut q: u128 = n << (128 - sr);
let mut r: u128 = n >> sr;
let mut carry: u64 = 0;
// Don't use a range because they may generate references to memcpy in unoptimized code
// Loop invariants: r < d; carry is 0 or 1
let mut i = 0;
while i < sr {
i += 1;
// r:q = ((r:q) << 1) | carry
r = (r << 1) | (q >> 127);
q = (q << 1) | carry as u128;
// carry = 0
// if r >= d {
// r -= d;
// carry = 1;
// }
let s = (d as u128).wrapping_sub(r).wrapping_sub(1) as i128 >> 127;
carry = (s & 1) as u64;
r -= (d as u128) & s as u128;
}
((q << 1) | carry as u128, r as u64)
}
// Divide by 1e19 for base10 algorithms.
#[cfg(feature = "table")]
pub(crate) fn u128_divrem_1e19(n: u128) -> (u128, u64) {
u128_divrem(n, 10000000000000000000, 0)
}
// TESTS
// -----
#[cfg(test)]
mod tests {
use super::*;
#[cfg(all(feature = "std", feature = "property_tests"))]
use proptest::{proptest, prop_assert_eq, prop_assert};
#[cfg(all(feature = "std", feature = "property_tests"))]
proptest! {
#[test]
fn u128_divrem_proptest(i in u128::min_value()..u128::max_value()) {
let (d, _, d_cltz) = u128_divisor(10);
let expected = (i / d as u128, (i % d as u128) as u64);
let actual = u128_divrem(i, d, d_cltz);
prop_assert_eq!(actual, expected);
}
}
}