1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
//! Optimized division algorithms for u128.
//!
//! The code in this module is derived off of `dtolnay/itoa`
//! and Rust's compiler-builtins crate. This copies a specific
//! path of LLVM's `__udivmodti4` intrinsic, which does division/
//! modulus for u128 in a single step. Rust implements both division
//! and modulus in terms of this intrinsic, but calls the intrinsic
//! twice for subsequent division and modulus operations on the same
//! dividend/divisor, leading to significant performance overhead.
//!
//! This module calculates the optimal divisors for each radix,
//! and exports a general-purpose division algorithm for u128 where
//! the divisor can fit in a u64.
//!
//! This implementation is derived from dtolnay/itoa, which can be found here:
//!     https://github.com/dtolnay/itoa/blob/master/src/udiv128.rs
//!
//! This implementation is also derived from Rust's compiler-builtins crate,
//! which can be found here:
//!     https://github.com/rust-lang-nursery/compiler-builtins/blob/master/src/int/udiv.rs
//!
//! Licensing for this module may be under the MIT or Illinois license
//! (a BSD-like license), and may be found here:
//!     https://github.com/rust-lang-nursery/compiler-builtins/blob/master/LICENSE.TXT

// Get the divisor for optimized 128-bit division.
// Returns the divisor, the number of digits processed, and the
// number of leading zeros in the divisor.
//
// These values were calculated using the following script:
//
//  ```text
//  import math
//
//  u64_max = 2**64 - 1
//  u128_max = 2**128-1
//
//  def is_valid(x):
//      return (
//          x <= u64_max
//          and (u128_max / (x**2)) < x
//      )
//
//  def find_pow(radix):
//      start_pow = int(math.floor(math.log(u64_max, radix))) - 1
//      while is_valid(radix**start_pow):
//          start_pow += 1
//      return start_pow - 1
//
//  for radix in range(2, 37):
//      power = find_pow(radix)
//      print(radix, radix**power, power)
//  ```
#[cfg(feature = "radix")]
#[inline]
pub(crate) fn u128_divisor(radix: u32) -> (u64, usize, u32) {
    match radix {
        2  => (9223372036854775808, 63, 0),    // 2^63
        3  => (12157665459056928801, 40, 0),   // 3^40
        4  => (4611686018427387904, 31, 1),    // 4^31
        5  => (7450580596923828125, 27, 1),    // 5^27
        6  => (4738381338321616896, 24, 1),    // 6^24
        7  => (3909821048582988049, 22, 2),    // 7^22
        8  => (9223372036854775808, 21, 0),    // 8^21
        9  => (12157665459056928801, 20, 0),   // 9^20
        10 => (10000000000000000000, 19, 0),   // 10^19
        11 => (5559917313492231481, 18, 1),    // 11^18
        12 => (2218611106740436992, 17, 3),    // 12^17
        13 => (8650415919381337933, 17, 1),    // 13^17
        14 => (2177953337809371136, 16, 3),    // 14^16
        15 => (6568408355712890625, 16, 1),    // 15^16
        16 => (1152921504606846976, 15, 3),    // 16^15
        17 => (2862423051509815793, 15, 2),    // 17^15
        18 => (6746640616477458432, 15, 1),    // 18^15
        19 => (15181127029874798299, 15, 0),   // 19^15
        20 => (1638400000000000000, 14, 3),    // 20^14
        21 => (3243919932521508681, 14, 2),    // 21^14
        22 => (6221821273427820544, 14, 1),    // 22^14
        23 => (11592836324538749809, 14, 0),   // 23^14
        24 => (876488338465357824, 13, 4),     // 24^13
        25 => (1490116119384765625, 13, 3),    // 25^13
        26 => (2481152873203736576, 13, 2),    // 26^13
        27 => (4052555153018976267, 13, 2),    // 27^13
        28 => (6502111422497947648, 13, 1),    // 28^13
        29 => (10260628712958602189, 13, 0),   // 29^13
        30 => (15943230000000000000, 13, 0),   // 30^13
        31 => (787662783788549761, 12, 4),     // 31^12
        32 => (1152921504606846976, 12, 3),    // 32^12
        33 => (1667889514952984961, 12, 3),    // 33^12
        34 => (2386420683693101056, 12, 2),    // 34^12
        35 => (3379220508056640625, 12, 2),    // 35^12
        36 => (4738381338321616896, 12, 1),    // 36^12
        _  => unreachable!(),
    }
}

// Get the divisor for optimized 128-bit division.
// Returns the divisor, the number of digits processed, and the
// number of leading zeros in the divisor.
#[cfg(not(feature = "radix"))]
#[inline]
#[allow(dead_code)]
pub(crate) fn u128_divisor(_: u32) -> (u64, usize, u32) {
    (10000000000000000000, 19, 0)              // 10^19
}

// Optimized division/remainder algorithm for u128.
// This is because the codegen for u128 divrem is very inefficient in Rust,
// calling both `__udivmodti4` twice internally, rather than a single time.
#[inline]
pub(crate) fn u128_divrem(n: u128, d: u64, d_cltz: u32) -> (u128, u64) {
    // Ensure we have the correct number of leading zeros passed.
    debug_assert_eq!(d_cltz, d.leading_zeros());

    // Optimize if we can divide using u64 first.
    let high = (n >> 64) as u64;
    if high == 0 {
        let low = n as u64;
        return ((low / d) as u128, low % d);
    }

    // sr = 1 + u64::BITS + d.leading_zeros() - high.leading_zeros();
    let sr = 65 + d_cltz - high.leading_zeros();

    // 1 <= sr <= u64::BITS - 1
    let mut q: u128 = n << (128 - sr);
    let mut r: u128 = n >> sr;
    let mut carry: u64 = 0;

    // Don't use a range because they may generate references to memcpy in unoptimized code
    // Loop invariants:  r < d; carry is 0 or 1
    let mut i = 0;
    while i < sr {
        i += 1;

        // r:q = ((r:q) << 1) | carry
        r = (r << 1) | (q >> 127);
        q = (q << 1) | carry as u128;

        // carry = 0
        // if r >= d {
        //     r -= d;
        //     carry = 1;
        // }
        let s = (d as u128).wrapping_sub(r).wrapping_sub(1) as i128 >> 127;
        carry = (s & 1) as u64;
        r -= (d as u128) & s as u128;
    }

    ((q << 1) | carry as u128, r as u64)
}

// Divide by 1e19 for base10 algorithms.
#[cfg(feature = "table")]
pub(crate) fn u128_divrem_1e19(n: u128) -> (u128, u64) {
    u128_divrem(n, 10000000000000000000, 0)
}

// TESTS
// -----

#[cfg(test)]
mod tests {
    use super::*;

    #[cfg(all(feature = "std", feature = "property_tests"))]
    use proptest::{proptest, prop_assert_eq, prop_assert};

    #[cfg(all(feature = "std", feature = "property_tests"))]
    proptest! {
        #[test]
        fn u128_divrem_proptest(i in u128::min_value()..u128::max_value()) {
            let (d, _, d_cltz) = u128_divisor(10);
            let expected = (i / d as u128, (i % d as u128) as u64);
            let actual = u128_divrem(i, d, d_cltz);
            prop_assert_eq!(actual, expected);
        }
    }
}