1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
// The macros break if the references are taken out, for some reason.
#![allow(clippy::op_ref)]

use crate::{
    Isometry3, Matrix4, Normed, OVector, Point3, Quaternion, Scalar, SimdRealField, Translation3,
    Unit, UnitQuaternion, Vector3, Zero, U8,
};
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use std::fmt;

use simba::scalar::{ClosedNeg, RealField};

/// A dual quaternion.
///
/// # Indexing
///
/// `DualQuaternions` are stored as \[..real, ..dual\].
/// Both of the quaternion components are laid out in `i, j, k, w` order.
///
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
///
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
///
/// let dq = DualQuaternion::from_real_and_dual(real, dual);
/// assert_eq!(dq[0], 2.0);
/// assert_eq!(dq[1], 3.0);
///
/// assert_eq!(dq[4], 6.0);
/// assert_eq!(dq[7], 5.0);
/// ```
///
/// NOTE:
///  As of December 2020, dual quaternion support is a work in progress.
///  If a feature that you need is missing, feel free to open an issue or a PR.
///  See <https://github.com/dimforge/nalgebra/issues/487>
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct DualQuaternion<T> {
    /// The real component of the quaternion
    pub real: Quaternion<T>,
    /// The dual component of the quaternion
    pub dual: Quaternion<T>,
}

impl<T: Scalar + Eq> Eq for DualQuaternion<T> {}

impl<T: Scalar> PartialEq for DualQuaternion<T> {
    #[inline]
    fn eq(&self, right: &Self) -> bool {
        self.real == right.real && self.dual == right.dual
    }
}

impl<T: Scalar + Zero> Default for DualQuaternion<T> {
    fn default() -> Self {
        Self {
            real: Quaternion::default(),
            dual: Quaternion::default(),
        }
    }
}

impl<T: SimdRealField> DualQuaternion<T>
where
    T::Element: SimdRealField,
{
    /// Normalizes this quaternion.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{DualQuaternion, Quaternion};
    /// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    /// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
    /// let dq = DualQuaternion::from_real_and_dual(real, dual);
    ///
    /// let dq_normalized = dq.normalize();
    ///
    /// relative_eq!(dq_normalized.real.norm(), 1.0);
    /// ```
    #[inline]
    #[must_use = "Did you mean to use normalize_mut()?"]
    pub fn normalize(&self) -> Self {
        let real_norm = self.real.norm();

        Self::from_real_and_dual(
            self.real.clone() / real_norm.clone(),
            self.dual.clone() / real_norm,
        )
    }

    /// Normalizes this quaternion.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{DualQuaternion, Quaternion};
    /// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    /// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
    /// let mut dq = DualQuaternion::from_real_and_dual(real, dual);
    ///
    /// dq.normalize_mut();
    ///
    /// relative_eq!(dq.real.norm(), 1.0);
    /// ```
    #[inline]
    pub fn normalize_mut(&mut self) -> T {
        let real_norm = self.real.norm();
        self.real /= real_norm.clone();
        self.dual /= real_norm.clone();
        real_norm
    }

    /// The conjugate of this dual quaternion, containing the conjugate of
    /// the real and imaginary parts..
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{DualQuaternion, Quaternion};
    /// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    /// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
    /// let dq = DualQuaternion::from_real_and_dual(real, dual);
    ///
    /// let conj = dq.conjugate();
    /// assert!(conj.real.i == -2.0 && conj.real.j == -3.0 && conj.real.k == -4.0);
    /// assert!(conj.real.w == 1.0);
    /// assert!(conj.dual.i == -6.0 && conj.dual.j == -7.0 && conj.dual.k == -8.0);
    /// assert!(conj.dual.w == 5.0);
    /// ```
    #[inline]
    #[must_use = "Did you mean to use conjugate_mut()?"]
    pub fn conjugate(&self) -> Self {
        Self::from_real_and_dual(self.real.conjugate(), self.dual.conjugate())
    }

    /// Replaces this quaternion by its conjugate.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{DualQuaternion, Quaternion};
    /// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    /// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
    /// let mut dq = DualQuaternion::from_real_and_dual(real, dual);
    ///
    /// dq.conjugate_mut();
    /// assert!(dq.real.i == -2.0 && dq.real.j == -3.0 && dq.real.k == -4.0);
    /// assert!(dq.real.w == 1.0);
    /// assert!(dq.dual.i == -6.0 && dq.dual.j == -7.0 && dq.dual.k == -8.0);
    /// assert!(dq.dual.w == 5.0);
    /// ```
    #[inline]
    pub fn conjugate_mut(&mut self) {
        self.real.conjugate_mut();
        self.dual.conjugate_mut();
    }

    /// Inverts this dual quaternion if it is not zero.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{DualQuaternion, Quaternion};
    /// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    /// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
    /// let dq = DualQuaternion::from_real_and_dual(real, dual);
    /// let inverse = dq.try_inverse();
    ///
    /// assert!(inverse.is_some());
    /// assert_relative_eq!(inverse.unwrap() * dq, DualQuaternion::identity());
    ///
    /// //Non-invertible case
    /// let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0);
    /// let dq = DualQuaternion::from_real_and_dual(zero, zero);
    /// let inverse = dq.try_inverse();
    ///
    /// assert!(inverse.is_none());
    /// ```
    #[inline]
    #[must_use = "Did you mean to use try_inverse_mut()?"]
    pub fn try_inverse(&self) -> Option<Self>
    where
        T: RealField,
    {
        let mut res = self.clone();
        if res.try_inverse_mut() {
            Some(res)
        } else {
            None
        }
    }

    /// Inverts this dual quaternion in-place if it is not zero.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{DualQuaternion, Quaternion};
    /// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    /// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
    /// let dq = DualQuaternion::from_real_and_dual(real, dual);
    /// let mut dq_inverse = dq;
    /// dq_inverse.try_inverse_mut();
    ///
    /// assert_relative_eq!(dq_inverse * dq, DualQuaternion::identity());
    ///
    /// //Non-invertible case
    /// let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0);
    /// let mut dq = DualQuaternion::from_real_and_dual(zero, zero);
    /// assert!(!dq.try_inverse_mut());
    /// ```
    #[inline]
    pub fn try_inverse_mut(&mut self) -> bool
    where
        T: RealField,
    {
        let inverted = self.real.try_inverse_mut();
        if inverted {
            self.dual = -self.real.clone() * self.dual.clone() * self.real.clone();
            true
        } else {
            false
        }
    }

    /// Linear interpolation between two dual quaternions.
    ///
    /// Computes `self * (1 - t) + other * t`.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{DualQuaternion, Quaternion};
    /// let dq1 = DualQuaternion::from_real_and_dual(
    ///     Quaternion::new(1.0, 0.0, 0.0, 4.0),
    ///     Quaternion::new(0.0, 2.0, 0.0, 0.0)
    /// );
    /// let dq2 = DualQuaternion::from_real_and_dual(
    ///     Quaternion::new(2.0, 0.0, 1.0, 0.0),
    ///     Quaternion::new(0.0, 2.0, 0.0, 0.0)
    /// );
    /// assert_eq!(dq1.lerp(&dq2, 0.25), DualQuaternion::from_real_and_dual(
    ///     Quaternion::new(1.25, 0.0, 0.25, 3.0),
    ///     Quaternion::new(0.0, 2.0, 0.0, 0.0)
    /// ));
    /// ```
    #[inline]
    #[must_use]
    pub fn lerp(&self, other: &Self, t: T) -> Self {
        self * (T::one() - t.clone()) + other * t
    }
}

#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Zeroable for DualQuaternion<T>
where
    T: Scalar + bytemuck::Zeroable,
    Quaternion<T>: bytemuck::Zeroable,
{
}

#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Pod for DualQuaternion<T>
where
    T: Scalar + bytemuck::Pod,
    Quaternion<T>: bytemuck::Pod,
{
}

#[cfg(feature = "serde-serialize-no-std")]
impl<T: SimdRealField> Serialize for DualQuaternion<T>
where
    T: Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
    where
        S: Serializer,
    {
        self.as_ref().serialize(serializer)
    }
}

#[cfg(feature = "serde-serialize-no-std")]
impl<'a, T: SimdRealField> Deserialize<'a> for DualQuaternion<T>
where
    T: Deserialize<'a>,
{
    fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
    where
        Des: Deserializer<'a>,
    {
        type Dq<T> = [T; 8];

        let dq: Dq<T> = Dq::<T>::deserialize(deserializer)?;

        Ok(Self {
            real: Quaternion::new(dq[3].clone(), dq[0].clone(), dq[1].clone(), dq[2].clone()),
            dual: Quaternion::new(dq[7].clone(), dq[4].clone(), dq[5].clone(), dq[6].clone()),
        })
    }
}

impl<T: RealField> DualQuaternion<T> {
    fn to_vector(self) -> OVector<T, U8> {
        self.as_ref().clone().into()
    }
}

impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq for DualQuaternion<T> {
    type Epsilon = T;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    #[inline]
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        self.clone().to_vector().abs_diff_eq(&other.clone().to_vector(), epsilon.clone()) ||
        // Account for the double-covering of S², i.e. q = -q
        self.clone().to_vector().iter().zip(other.clone().to_vector().iter()).all(|(a, b)| a.abs_diff_eq(&-b.clone(), epsilon.clone()))
    }
}

impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq for DualQuaternion<T> {
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    #[inline]
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        self.clone().to_vector().relative_eq(&other.clone().to_vector(), epsilon.clone(), max_relative.clone()) ||
        // Account for the double-covering of S², i.e. q = -q
        self.clone().to_vector().iter().zip(other.clone().to_vector().iter()).all(|(a, b)| a.relative_eq(&-b.clone(), epsilon.clone(), max_relative.clone()))
    }
}

impl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq for DualQuaternion<T> {
    #[inline]
    fn default_max_ulps() -> u32 {
        T::default_max_ulps()
    }

    #[inline]
    fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
        self.clone().to_vector().ulps_eq(&other.clone().to_vector(), epsilon.clone(), max_ulps.clone()) ||
        // Account for the double-covering of S², i.e. q = -q.
        self.clone().to_vector().iter().zip(other.clone().to_vector().iter()).all(|(a, b)| a.ulps_eq(&-b.clone(), epsilon.clone(), max_ulps.clone()))
    }
}

/// A unit quaternions. May be used to represent a rotation followed by a translation.
pub type UnitDualQuaternion<T> = Unit<DualQuaternion<T>>;

impl<T: Scalar + ClosedNeg + PartialEq + SimdRealField> PartialEq for UnitDualQuaternion<T> {
    #[inline]
    fn eq(&self, rhs: &Self) -> bool {
        self.as_ref().eq(rhs.as_ref())
    }
}

impl<T: Scalar + ClosedNeg + Eq + SimdRealField> Eq for UnitDualQuaternion<T> {}

impl<T: SimdRealField> Normed for DualQuaternion<T> {
    type Norm = T::SimdRealField;

    #[inline]
    fn norm(&self) -> T::SimdRealField {
        self.real.norm()
    }

    #[inline]
    fn norm_squared(&self) -> T::SimdRealField {
        self.real.norm_squared()
    }

    #[inline]
    fn scale_mut(&mut self, n: Self::Norm) {
        self.real.scale_mut(n.clone());
        self.dual.scale_mut(n);
    }

    #[inline]
    fn unscale_mut(&mut self, n: Self::Norm) {
        self.real.unscale_mut(n.clone());
        self.dual.unscale_mut(n);
    }
}

impl<T: SimdRealField> UnitDualQuaternion<T>
where
    T::Element: SimdRealField,
{
    /// The underlying dual quaternion.
    ///
    /// Same as `self.as_ref()`.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{DualQuaternion, UnitDualQuaternion, Quaternion};
    /// let id = UnitDualQuaternion::identity();
    /// assert_eq!(*id.dual_quaternion(), DualQuaternion::from_real_and_dual(
    ///     Quaternion::new(1.0, 0.0, 0.0, 0.0),
    ///     Quaternion::new(0.0, 0.0, 0.0, 0.0)
    /// ));
    /// ```
    #[inline]
    #[must_use]
    pub fn dual_quaternion(&self) -> &DualQuaternion<T> {
        self.as_ref()
    }

    /// Compute the conjugate of this unit quaternion.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
    /// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    /// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
    /// let unit = UnitDualQuaternion::new_normalize(
    ///     DualQuaternion::from_real_and_dual(qr, qd)
    /// );
    /// let conj = unit.conjugate();
    /// assert_eq!(conj.real, unit.real.conjugate());
    /// assert_eq!(conj.dual, unit.dual.conjugate());
    /// ```
    #[inline]
    #[must_use = "Did you mean to use conjugate_mut()?"]
    pub fn conjugate(&self) -> Self {
        Self::new_unchecked(self.as_ref().conjugate())
    }

    /// Compute the conjugate of this unit quaternion in-place.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
    /// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    /// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
    /// let unit = UnitDualQuaternion::new_normalize(
    ///     DualQuaternion::from_real_and_dual(qr, qd)
    /// );
    /// let mut conj = unit.clone();
    /// conj.conjugate_mut();
    /// assert_eq!(conj.as_ref().real, unit.as_ref().real.conjugate());
    /// assert_eq!(conj.as_ref().dual, unit.as_ref().dual.conjugate());
    /// ```
    #[inline]
    pub fn conjugate_mut(&mut self) {
        self.as_mut_unchecked().conjugate_mut()
    }

    /// Inverts this dual quaternion if it is not zero.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, Quaternion, DualQuaternion};
    /// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    /// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
    /// let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
    /// let inv = unit.inverse();
    /// assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
    /// assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use = "Did you mean to use inverse_mut()?"]
    pub fn inverse(&self) -> Self {
        let real = Unit::new_unchecked(self.as_ref().real.clone())
            .inverse()
            .into_inner();
        let dual = -real.clone() * self.as_ref().dual.clone() * real.clone();
        UnitDualQuaternion::new_unchecked(DualQuaternion { real, dual })
    }

    /// Inverts this dual quaternion in place if it is not zero.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, Quaternion, DualQuaternion};
    /// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    /// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
    /// let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
    /// let mut inv = unit.clone();
    /// inv.inverse_mut();
    /// assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
    /// assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn inverse_mut(&mut self) {
        let quat = self.as_mut_unchecked();
        quat.real = Unit::new_unchecked(quat.real.clone())
            .inverse()
            .into_inner();
        quat.dual = -quat.real.clone() * quat.dual.clone() * quat.real.clone();
    }

    /// The unit dual quaternion needed to make `self` and `other` coincide.
    ///
    /// The result is such that: `self.isometry_to(other) * self == other`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
    /// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    /// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
    /// let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
    /// let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qd, qr));
    /// let dq_to = dq1.isometry_to(&dq2);
    /// assert_relative_eq!(dq_to * dq1, dq2, epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use]
    pub fn isometry_to(&self, other: &Self) -> Self {
        other / self
    }

    /// Linear interpolation between two unit dual quaternions.
    ///
    /// The result is not normalized.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
    /// let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
    ///     Quaternion::new(0.5, 0.0, 0.5, 0.0),
    ///     Quaternion::new(0.0, 0.5, 0.0, 0.5)
    /// ));
    /// let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
    ///     Quaternion::new(0.5, 0.0, 0.0, 0.5),
    ///     Quaternion::new(0.5, 0.0, 0.5, 0.0)
    /// ));
    /// assert_relative_eq!(
    ///     UnitDualQuaternion::new_normalize(dq1.lerp(&dq2, 0.5)),
    ///     UnitDualQuaternion::new_normalize(
    ///         DualQuaternion::from_real_and_dual(
    ///             Quaternion::new(0.5, 0.0, 0.25, 0.25),
    ///             Quaternion::new(0.25, 0.25, 0.25, 0.25)
    ///         )
    ///     ),
    ///     epsilon = 1.0e-6
    /// );
    /// ```
    #[inline]
    #[must_use]
    pub fn lerp(&self, other: &Self, t: T) -> DualQuaternion<T> {
        self.as_ref().lerp(other.as_ref(), t)
    }

    /// Normalized linear interpolation between two unit quaternions.
    ///
    /// This is the same as `self.lerp` except that the result is normalized.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
    /// let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
    ///     Quaternion::new(0.5, 0.0, 0.5, 0.0),
    ///     Quaternion::new(0.0, 0.5, 0.0, 0.5)
    /// ));
    /// let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
    ///     Quaternion::new(0.5, 0.0, 0.0, 0.5),
    ///     Quaternion::new(0.5, 0.0, 0.5, 0.0)
    /// ));
    /// assert_relative_eq!(dq1.nlerp(&dq2, 0.2), UnitDualQuaternion::new_normalize(
    ///     DualQuaternion::from_real_and_dual(
    ///         Quaternion::new(0.5, 0.0, 0.4, 0.1),
    ///         Quaternion::new(0.1, 0.4, 0.1, 0.4)
    ///     )
    /// ), epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use]
    pub fn nlerp(&self, other: &Self, t: T) -> Self {
        let mut res = self.lerp(other, t);
        let _ = res.normalize_mut();

        Self::new_unchecked(res)
    }

    /// Screw linear interpolation between two unit quaternions. This creates a
    /// smooth arc from one dual-quaternion to another.
    ///
    /// Panics if the angle between both quaternion is 180 degrees (in which case the interpolation
    /// is not well-defined). Use `.try_sclerp` instead to avoid the panic.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, DualQuaternion, UnitQuaternion, Vector3};
    ///
    /// let dq1 = UnitDualQuaternion::from_parts(
    ///     Vector3::new(0.0, 3.0, 0.0).into(),
    ///     UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0),
    /// );
    ///
    /// let dq2 = UnitDualQuaternion::from_parts(
    ///     Vector3::new(0.0, 0.0, 3.0).into(),
    ///     UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0),
    /// );
    ///
    /// let dq = dq1.sclerp(&dq2, 1.0 / 3.0);
    ///
    /// assert_relative_eq!(
    ///     dq.rotation().euler_angles().0, std::f32::consts::FRAC_PI_2, epsilon = 1.0e-6
    /// );
    /// assert_relative_eq!(dq.translation().vector.y, 3.0, epsilon = 1.0e-6);
    #[inline]
    #[must_use]
    pub fn sclerp(&self, other: &Self, t: T) -> Self
    where
        T: RealField,
    {
        self.try_sclerp(other, t, T::default_epsilon())
            .expect("DualQuaternion sclerp: ambiguous configuration.")
    }

    /// Computes the screw-linear interpolation between two unit quaternions or returns `None`
    /// if both quaternions are approximately 180 degrees apart (in which case the interpolation is
    /// not well-defined).
    ///
    /// # Arguments
    /// * `self`: the first quaternion to interpolate from.
    /// * `other`: the second quaternion to interpolate toward.
    /// * `t`: the interpolation parameter. Should be between 0 and 1.
    /// * `epsilon`: the value below which the sinus of the angle separating both quaternion
    /// must be to return `None`.
    #[inline]
    #[must_use]
    pub fn try_sclerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>
    where
        T: RealField,
    {
        let two = T::one() + T::one();
        let half = T::one() / two.clone();

        // Invert one of the quaternions if we've got a longest-path
        // interpolation.
        let other = {
            let dot_product = self.as_ref().real.coords.dot(&other.as_ref().real.coords);
            if dot_product < T::zero() {
                -other.clone()
            } else {
                other.clone()
            }
        };

        let difference = self.as_ref().conjugate() * other.as_ref();
        let norm_squared = difference.real.vector().norm_squared();
        if relative_eq!(norm_squared, T::zero(), epsilon = epsilon) {
            return None;
        }

        let inverse_norm_squared = T::one() / norm_squared;
        let inverse_norm = inverse_norm_squared.sqrt();

        let mut angle = two.clone() * difference.real.scalar().acos();
        let mut pitch = -two * difference.dual.scalar() * inverse_norm.clone();
        let direction = difference.real.vector() * inverse_norm.clone();
        let moment = (difference.dual.vector()
            - direction.clone() * (pitch.clone() * difference.real.scalar() * half.clone()))
            * inverse_norm;

        angle *= t.clone();
        pitch *= t;

        let sin = (half.clone() * angle.clone()).sin();
        let cos = (half.clone() * angle).cos();
        let real = Quaternion::from_parts(cos.clone(), direction.clone() * sin.clone());
        let dual = Quaternion::from_parts(
            -pitch.clone() * half.clone() * sin.clone(),
            moment * sin + direction * (pitch * half * cos),
        );

        Some(
            self * UnitDualQuaternion::new_unchecked(DualQuaternion::from_real_and_dual(
                real, dual,
            )),
        )
    }

    /// Return the rotation part of this unit dual quaternion.
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
    /// let dq = UnitDualQuaternion::from_parts(
    ///     Vector3::new(0.0, 3.0, 0.0).into(),
    ///     UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0)
    /// );
    ///
    /// assert_relative_eq!(
    ///     dq.rotation().angle(), std::f32::consts::FRAC_PI_4, epsilon = 1.0e-6
    /// );
    /// ```
    #[inline]
    #[must_use]
    pub fn rotation(&self) -> UnitQuaternion<T> {
        Unit::new_unchecked(self.as_ref().real.clone())
    }

    /// Return the translation part of this unit dual quaternion.
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
    /// let dq = UnitDualQuaternion::from_parts(
    ///     Vector3::new(0.0, 3.0, 0.0).into(),
    ///     UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0)
    /// );
    ///
    /// assert_relative_eq!(
    ///     dq.translation().vector, Vector3::new(0.0, 3.0, 0.0), epsilon = 1.0e-6
    /// );
    /// ```
    #[inline]
    #[must_use]
    pub fn translation(&self) -> Translation3<T> {
        let two = T::one() + T::one();
        Translation3::from(
            ((self.as_ref().dual.clone() * self.as_ref().real.clone().conjugate()) * two)
                .vector()
                .into_owned(),
        )
    }

    /// Builds an isometry from this unit dual quaternion.
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
    /// let rotation = UnitQuaternion::from_euler_angles(std::f32::consts::PI, 0.0, 0.0);
    /// let translation = Vector3::new(1.0, 3.0, 2.5);
    /// let dq = UnitDualQuaternion::from_parts(
    ///     translation.into(),
    ///     rotation
    /// );
    /// let iso = dq.to_isometry();
    ///
    /// assert_relative_eq!(iso.rotation.angle(), std::f32::consts::PI, epsilon = 1.0e-6);
    /// assert_relative_eq!(iso.translation.vector, translation, epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use]
    pub fn to_isometry(self) -> Isometry3<T> {
        Isometry3::from_parts(self.translation(), self.rotation())
    }

    /// Rotate and translate a point by this unit dual quaternion interpreted
    /// as an isometry.
    ///
    /// This is the same as the multiplication `self * pt`.
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
    /// let dq = UnitDualQuaternion::from_parts(
    ///     Vector3::new(0.0, 3.0, 0.0).into(),
    ///     UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
    /// );
    /// let point = Point3::new(1.0, 2.0, 3.0);
    ///
    /// assert_relative_eq!(
    ///     dq.transform_point(&point), Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6
    /// );
    /// ```
    #[inline]
    #[must_use]
    pub fn transform_point(&self, pt: &Point3<T>) -> Point3<T> {
        self * pt
    }

    /// Rotate a vector by this unit dual quaternion, ignoring the translational
    /// component.
    ///
    /// This is the same as the multiplication `self * v`.
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
    /// let dq = UnitDualQuaternion::from_parts(
    ///     Vector3::new(0.0, 3.0, 0.0).into(),
    ///     UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
    /// );
    /// let vector = Vector3::new(1.0, 2.0, 3.0);
    ///
    /// assert_relative_eq!(
    ///     dq.transform_vector(&vector), Vector3::new(1.0, -3.0, 2.0), epsilon = 1.0e-6
    /// );
    /// ```
    #[inline]
    #[must_use]
    pub fn transform_vector(&self, v: &Vector3<T>) -> Vector3<T> {
        self * v
    }

    /// Rotate and translate a point by the inverse of this unit quaternion.
    ///
    /// This may be cheaper than inverting the unit dual quaternion and
    /// transforming the point.
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
    /// let dq = UnitDualQuaternion::from_parts(
    ///     Vector3::new(0.0, 3.0, 0.0).into(),
    ///     UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
    /// );
    /// let point = Point3::new(1.0, 2.0, 3.0);
    ///
    /// assert_relative_eq!(
    ///     dq.inverse_transform_point(&point), Point3::new(1.0, 3.0, 1.0), epsilon = 1.0e-6
    /// );
    /// ```
    #[inline]
    #[must_use]
    pub fn inverse_transform_point(&self, pt: &Point3<T>) -> Point3<T> {
        self.inverse() * pt
    }

    /// Rotate a vector by the inverse of this unit quaternion, ignoring the
    /// translational component.
    ///
    /// This may be cheaper than inverting the unit dual quaternion and
    /// transforming the vector.
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
    /// let dq = UnitDualQuaternion::from_parts(
    ///     Vector3::new(0.0, 3.0, 0.0).into(),
    ///     UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
    /// );
    /// let vector = Vector3::new(1.0, 2.0, 3.0);
    ///
    /// assert_relative_eq!(
    ///     dq.inverse_transform_vector(&vector), Vector3::new(1.0, 3.0, -2.0), epsilon = 1.0e-6
    /// );
    /// ```
    #[inline]
    #[must_use]
    pub fn inverse_transform_vector(&self, v: &Vector3<T>) -> Vector3<T> {
        self.inverse() * v
    }

    /// Rotate a unit vector by the inverse of this unit quaternion, ignoring
    /// the translational component. This may be
    /// cheaper than inverting the unit dual quaternion and transforming the
    /// vector.
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Unit, Vector3};
    /// let dq = UnitDualQuaternion::from_parts(
    ///     Vector3::new(0.0, 3.0, 0.0).into(),
    ///     UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
    /// );
    /// let vector = Unit::new_unchecked(Vector3::new(0.0, 1.0, 0.0));
    ///
    /// assert_relative_eq!(
    ///     dq.inverse_transform_unit_vector(&vector),
    ///     Unit::new_unchecked(Vector3::new(0.0, 0.0, -1.0)),
    ///     epsilon = 1.0e-6
    /// );
    /// ```
    #[inline]
    #[must_use]
    pub fn inverse_transform_unit_vector(&self, v: &Unit<Vector3<T>>) -> Unit<Vector3<T>> {
        self.inverse() * v
    }
}

impl<T: SimdRealField + RealField> UnitDualQuaternion<T>
where
    T::Element: SimdRealField,
{
    /// Converts this unit dual quaternion interpreted as an isometry
    /// into its equivalent homogeneous transformation matrix.
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{Matrix4, UnitDualQuaternion, UnitQuaternion, Vector3};
    /// let dq = UnitDualQuaternion::from_parts(
    ///     Vector3::new(1.0, 3.0, 2.0).into(),
    ///     UnitQuaternion::from_axis_angle(&Vector3::z_axis(), std::f32::consts::FRAC_PI_6)
    /// );
    /// let expected = Matrix4::new(0.8660254, -0.5,      0.0, 1.0,
    ///                             0.5,       0.8660254, 0.0, 3.0,
    ///                             0.0,       0.0,       1.0, 2.0,
    ///                             0.0,       0.0,       0.0, 1.0);
    ///
    /// assert_relative_eq!(dq.to_homogeneous(), expected, epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use]
    pub fn to_homogeneous(self) -> Matrix4<T> {
        self.to_isometry().to_homogeneous()
    }
}

impl<T: RealField> Default for UnitDualQuaternion<T> {
    fn default() -> Self {
        Self::identity()
    }
}

impl<T: RealField + fmt::Display> fmt::Display for UnitDualQuaternion<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if let Some(axis) = self.rotation().axis() {
            let axis = axis.into_inner();
            write!(
                f,
                "UnitDualQuaternion translation: {} − angle: {} − axis: ({}, {}, {})",
                self.translation().vector,
                self.rotation().angle(),
                axis[0],
                axis[1],
                axis[2]
            )
        } else {
            write!(
                f,
                "UnitDualQuaternion translation: {} − angle: {} − axis: (undefined)",
                self.translation().vector,
                self.rotation().angle()
            )
        }
    }
}

impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq for UnitDualQuaternion<T> {
    type Epsilon = T;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    #[inline]
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        self.as_ref().abs_diff_eq(other.as_ref(), epsilon)
    }
}

impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq for UnitDualQuaternion<T> {
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    #[inline]
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        self.as_ref()
            .relative_eq(other.as_ref(), epsilon, max_relative)
    }
}

impl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq for UnitDualQuaternion<T> {
    #[inline]
    fn default_max_ulps() -> u32 {
        T::default_max_ulps()
    }

    #[inline]
    fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
        self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
    }
}