1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
//! Contains types related to the definition of systems.

use std::{any::TypeId, borrow::Cow, collections::HashMap, marker::PhantomData};

use bit_set::BitSet;

use super::{
    command::CommandBuffer,
    resources::{Resource, ResourceSet, ResourceTypeId, UnsafeResources},
    schedule::Runnable,
};
use crate::internals::{
    cons::{ConsAppend, ConsFlatten},
    permissions::Permissions,
    query::{
        filter::EntityFilter,
        view::{read::Read, write::Write, IntoView, View},
        Query,
    },
    storage::{
        archetype::ArchetypeIndex,
        component::{Component, ComponentTypeId},
    },
    subworld::{ArchetypeAccess, ComponentAccess, SubWorld},
    world::{World, WorldId},
};

/// Provides an abstraction across tuples of queries for system closures.
pub trait QuerySet: Send + Sync {
    /// Evaluates the queries and records which archetypes they require access to into a bitset.
    fn filter_archetypes(&mut self, world: &World, archetypes: &mut BitSet);
}

macro_rules! queryset_tuple {
    ($head_ty:ident) => {
        impl_queryset_tuple!($head_ty);
    };
    ($head_ty:ident, $( $tail_ty:ident ),*) => (
        impl_queryset_tuple!($head_ty, $( $tail_ty ),*);
        queryset_tuple!($( $tail_ty ),*);
    );
}

macro_rules! impl_queryset_tuple {
    ($($ty: ident),*) => {
            #[allow(unused_parens, non_snake_case)]
            impl<$( $ty, )*> QuerySet for ($( $ty, )*)
            where
                $( $ty: QuerySet, )*
            {
                fn filter_archetypes(&mut self, world: &World, bitset: &mut BitSet) {
                    let ($($ty,)*) = self;

                    $( $ty.filter_archetypes(world, bitset); )*
                }
            }
    };
}

#[cfg(feature = "extended-tuple-impls")]
queryset_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z);

#[cfg(not(feature = "extended-tuple-impls"))]
queryset_tuple!(A, B, C, D, E, F, G, H);

impl QuerySet for () {
    fn filter_archetypes(&mut self, _: &World, _: &mut BitSet) {}
}

impl<AV, AF> QuerySet for Query<AV, AF>
where
    AV: IntoView + Send + Sync,
    AF: EntityFilter,
{
    fn filter_archetypes(&mut self, world: &World, bitset: &mut BitSet) {
        for &ArchetypeIndex(arch) in self.find_archetypes(world) {
            bitset.insert(arch as usize);
        }
    }
}

/// Structure describing the resource and component access conditions of the system.
#[derive(Debug, Clone)]
pub struct SystemAccess {
    resources: Permissions<ResourceTypeId>,
    components: Permissions<ComponentTypeId>,
}

/// A diagnostic identifier for a system.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct SystemId {
    name: Cow<'static, str>,
    type_id: TypeId,
}

struct Unspecified;

impl std::fmt::Display for SystemId {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.name)
    }
}

impl<T: Into<Cow<'static, str>>> From<T> for SystemId {
    fn from(name: T) -> SystemId {
        SystemId {
            name: name.into(),
            type_id: TypeId::of::<Unspecified>(),
        }
    }
}

#[derive(Clone)]
struct ResourceMarker<T>(PhantomData<*const T>);
unsafe impl<T: Send> Send for ResourceMarker<T> {}
unsafe impl<T: Sync> Sync for ResourceMarker<T> {}

#[derive(Clone)]
/// The concrete type which contains the system closure provided by the user.  This struct should
/// not be constructed directly, and instead should be created using `SystemBuilder`.
///
/// Implements `Schedulable` which is consumable by the `StageExecutor`, executing the closure.
///
/// Also handles caching of archetype information, as well as maintaining the provided
/// information about what queries this system will run and, as a result, its data access.
pub struct System<R, Q, F> {
    name: Option<SystemId>,
    _resources: ResourceMarker<R>,
    queries: Q,
    run_fn: F,
    archetypes: ArchetypeAccess,
    access: SystemAccess,
    command_buffer: HashMap<WorldId, CommandBuffer>,
}

impl<R, Q, F> Runnable for System<R, Q, F>
where
    R: for<'a> ResourceSet<'a>,
    Q: QuerySet,
    F: SystemFn<R, Q>,
{
    fn name(&self) -> Option<&SystemId> {
        self.name.as_ref()
    }

    fn reads(&self) -> (&[ResourceTypeId], &[ComponentTypeId]) {
        (
            &self.access.resources.reads_only(),
            &self.access.components.reads_only(),
        )
    }

    fn writes(&self) -> (&[ResourceTypeId], &[ComponentTypeId]) {
        (
            &self.access.resources.writes(),
            &self.access.components.writes(),
        )
    }

    fn prepare(&mut self, world: &World) {
        if let ArchetypeAccess::Some(bitset) = &mut self.archetypes {
            self.queries.filter_archetypes(world, bitset);
        }
    }

    fn accesses_archetypes(&self) -> &ArchetypeAccess {
        &self.archetypes
    }

    fn command_buffer_mut(&mut self, world: WorldId) -> Option<&mut CommandBuffer> {
        self.command_buffer.get_mut(&world)
    }

    unsafe fn run_unsafe(&mut self, world: &World, resources: &UnsafeResources) {
        // safety:
        // It is difficult to correctly communicate the lifetime of the resource fetch through to the system closure.
        // We are hacking this by passing the fetch with a static lifetime to its internal references.
        // This is sound because the fetch structs only provide access to the resource through reborrows on &self.
        // As the fetch struct is created on the stack here, and the resources it is holding onto is a parameter to this function,
        // we know for certain that the lifetime of the fetch struct (which constrains the lifetime of the resource the system sees)
        // must be shorter than the lifetime of the resource.
        let resources_static = &*(resources as *const UnsafeResources);
        let mut resources = R::fetch_unchecked(resources_static);

        let queries = &mut self.queries;
        let component_access = ComponentAccess::Allow(Cow::Borrowed(&self.access.components));
        let mut world_shim =
            SubWorld::new_unchecked(world, component_access, self.archetypes.bitset());
        let cmd = self
            .command_buffer
            .entry(world.id())
            .or_insert_with(|| CommandBuffer::new(world));

        let borrow = &mut self.run_fn;
        borrow.run(cmd, &mut world_shim, &mut resources, queries);
    }
}

/// A function which can provide the body of a system.
pub trait SystemFn<R: ResourceSet<'static>, Q: QuerySet> {
    /// Runs the system body.
    fn run(
        &mut self,
        commands: &mut CommandBuffer,
        world: &mut SubWorld,
        resources: &mut R::Result,
        queries: &mut Q,
    );
}

impl<F, R, Q> SystemFn<R, Q> for F
where
    R: ResourceSet<'static>,
    Q: QuerySet,
    F: FnMut(&mut CommandBuffer, &mut SubWorld, &mut R::Result, &mut Q) + 'static,
{
    fn run(
        &mut self,
        commands: &mut CommandBuffer,
        world: &mut SubWorld,
        resources: &mut R::Result,
        queries: &mut Q,
    ) {
        (self)(commands, world, resources, queries)
    }
}

// This builder uses a Cons/Hlist implemented in cons.rs to generated the static query types
// for this system. Access types are instead stored and abstracted in the top level vec here
// so the underlying ResourceSet type functions from the queries don't need to allocate.
// Otherwise, this leads to excessive alloaction for every call to reads/writes

/// A low level builder for constructing systems.
/// ```rust
/// # use legion::*;
/// # #[derive(Copy, Clone, Debug, PartialEq)]
/// # struct Position;
/// # #[derive(Copy, Clone, Debug, PartialEq)]
/// # struct Velocity;
/// # #[derive(Copy, Clone, Debug, PartialEq)]
/// # struct Model;
/// #[derive(Copy, Clone, Debug, PartialEq)]
/// struct Static;
/// #[derive(Debug)]
/// struct TestResource {}
///
/// let mut system_one = SystemBuilder::new("TestSystem")
///     .read_resource::<TestResource>()
///     .with_query(
///         <(Entity, Read<Position>, Read<Model>)>::query()
///             .filter(!component::<Static>() | maybe_changed::<Position>()),
///     )
///     .build(
///         move |commands, world, resource, queries| {
///             for (entity, pos, model) in queries.iter_mut(world) {}
///         },
///     );
/// ```
pub struct SystemBuilder<Q = (), R = ()> {
    name: Option<SystemId>,
    queries: Q,
    resources: R,
    resource_access: Permissions<ResourceTypeId>,
    component_access: Permissions<ComponentTypeId>,
    access_all_archetypes: bool,
}

impl SystemBuilder<(), ()> {
    /// Create a new system builder to construct a new system.
    ///
    /// Please note, the `name` argument for this method is just for debugging and visualization
    /// purposes and is not logically used anywhere.
    pub fn new<T: Into<SystemId>>(name: T) -> Self {
        Self {
            name: Some(name.into()),
            ..Self::default()
        }
    }
}

impl Default for SystemBuilder<(), ()> {
    fn default() -> Self {
        Self {
            name: None,
            queries: (),
            resources: (),
            resource_access: Permissions::default(),
            component_access: Permissions::default(),
            access_all_archetypes: false,
        }
    }
}

impl<Q, R> SystemBuilder<Q, R>
where
    Q: 'static + Send + ConsFlatten,
    R: 'static + ConsFlatten,
{
    /// Provides a name to the system being built.
    pub fn with_name(self, name: SystemId) -> Self {
        Self {
            name: Some(name),
            ..self
        }
    }

    /// Defines a query to provide this system for its execution. Multiple queries can be provided,
    /// and queries are cached internally for efficiency for filtering and archetype ID handling.
    ///
    /// It is best practice to define your queries here, to allow for the caching to take place.
    /// These queries are then provided to the executing closure as a tuple of queries.
    pub fn with_query<V, F>(
        mut self,
        query: Query<V, F>,
    ) -> SystemBuilder<<Q as ConsAppend<Query<V, F>>>::Output, R>
    where
        V: IntoView,
        F: 'static + EntityFilter,
        Q: ConsAppend<Query<V, F>>,
    {
        self.component_access.add(V::View::requires_permissions());

        SystemBuilder {
            name: self.name,
            queries: ConsAppend::append(self.queries, query),
            resources: self.resources,
            resource_access: self.resource_access,
            component_access: self.component_access,
            access_all_archetypes: self.access_all_archetypes,
        }
    }

    /// Flag this resource type as being read by this system.
    ///
    /// This will inform the dispatcher to not allow any writes access to this resource while
    /// this system is running. Parralel reads still occur during execution.
    pub fn read_resource<T>(mut self) -> SystemBuilder<Q, <R as ConsAppend<Read<T>>>::Output>
    where
        T: 'static + Resource,
        R: ConsAppend<Read<T>>,
        <R as ConsAppend<Read<T>>>::Output: ConsFlatten,
    {
        self.resource_access.push_read(ResourceTypeId::of::<T>());

        SystemBuilder {
            name: self.name,
            queries: self.queries,
            resources: ConsAppend::append(self.resources, Read::<T>::default()),
            resource_access: self.resource_access,
            component_access: self.component_access,
            access_all_archetypes: self.access_all_archetypes,
        }
    }

    /// Flag this resource type as being written by this system.
    ///
    /// This will inform the dispatcher to not allow any parallel access to this resource while
    /// this system is running.
    pub fn write_resource<T>(mut self) -> SystemBuilder<Q, <R as ConsAppend<Write<T>>>::Output>
    where
        T: 'static + Resource,
        R: ConsAppend<Write<T>>,
        <R as ConsAppend<Write<T>>>::Output: ConsFlatten,
    {
        self.resource_access.push(ResourceTypeId::of::<T>());

        SystemBuilder {
            name: self.name,
            queries: self.queries,
            resources: ConsAppend::append(self.resources, Write::<T>::default()),
            resource_access: self.resource_access,
            component_access: self.component_access,
            access_all_archetypes: self.access_all_archetypes,
        }
    }

    /// This performs a soft resource block on the component for writing. The dispatcher will
    /// generally handle dispatching read and writes on components based on archetype, allowing
    /// for more granular access and more parallelization of systems.
    ///
    /// Using this method will mark the entire component as read by this system, blocking writing
    /// systems from accessing any archetypes which contain this component for the duration of its
    /// execution.
    ///
    /// This type of access with `SubWorld` is provided for cases where sparse component access
    /// is required and searching entire query spaces for entities is inefficient.
    pub fn read_component<T>(mut self) -> Self
    where
        T: Component,
    {
        self.component_access.push_read(ComponentTypeId::of::<T>());
        self.access_all_archetypes = true;

        self
    }

    /// This performs a exclusive resource block on the component for writing. The dispatcher will
    /// generally handle dispatching read and writes on components based on archetype, allowing
    /// for more granular access and more parallelization of systems.
    ///
    /// Using this method will mark the entire component as written by this system, blocking other
    /// systems from accessing any archetypes which contain this component for the duration of its
    /// execution.
    ///
    /// This type of access with `SubWorld` is provided for cases where sparse component access
    /// is required and searching entire query spaces for entities is inefficient.
    pub fn write_component<T>(mut self) -> Self
    where
        T: Component,
    {
        self.component_access.push(ComponentTypeId::of::<T>());
        self.access_all_archetypes = true;

        self
    }

    /// Builds a system which is not `Schedulable`, as it is not thread safe (!Send and !Sync),
    /// but still implements all the calling infrastructure of the `Runnable` trait. This provides
    /// a way for legion consumers to leverage the `System` construction and type-handling of
    /// this build for thread local systems which cannot leave the main initializing thread.
    pub fn build<F>(
        self,
        run_fn: F,
    ) -> System<<R as ConsFlatten>::Output, <Q as ConsFlatten>::Output, F>
    where
        <R as ConsFlatten>::Output: for<'a> ResourceSet<'a>,
        <Q as ConsFlatten>::Output: QuerySet,
        F: FnMut(
            &mut CommandBuffer,
            &mut SubWorld,
            &mut <<R as ConsFlatten>::Output as ResourceSet<'static>>::Result,
            &mut <Q as ConsFlatten>::Output,
        ),
    {
        System {
            name: self.name,
            run_fn,
            _resources: ResourceMarker(PhantomData),
            queries: self.queries.flatten(),
            archetypes: if self.access_all_archetypes {
                ArchetypeAccess::All
            } else {
                ArchetypeAccess::Some(BitSet::default())
            },
            access: SystemAccess {
                resources: self.resource_access,
                components: self.component_access,
            },
            command_buffer: HashMap::default(),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        internals::{query::IntoQuery, systems::system::SystemBuilder},
        Resources, Schedule,
    };

    #[test]
    fn subworld_split_in_system_read() {
        struct Ball;
        struct Paddle;
        struct Transform;

        let mut world = World::default();
        let mut resources = Resources::default();

        world.push((Ball, Transform));
        world.push((Paddle, Transform));
        world.push((Paddle, Transform));

        let system = SystemBuilder::new("PaddleSystem")
            .with_query(<(&mut Ball, &Transform)>::query())
            .with_query(<(&Paddle, &Transform)>::query())
            .build(|_, world, _, (ball_query, paddle_query)| {
                let (mut balls, paddles) = world.split_for_query(ball_query);

                for _ in ball_query.iter_mut(&mut balls) {
                    for _ in paddle_query.iter(&paddles) {}
                }
            });

        let mut schedule = Schedule::builder().add_thread_local(system).build();
        schedule.execute(&mut world, &mut resources);
    }
}