1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
use std::ops::RangeInclusive;

use super::items::Value;
use crate::*;

/// 2D bounding box of f64 precision.
/// The range of data values we show.
#[derive(Clone, Copy, PartialEq, Debug)]
#[cfg_attr(feature = "persistence", derive(serde::Deserialize, serde::Serialize))]
pub(crate) struct Bounds {
    pub min: [f64; 2],
    pub max: [f64; 2],
}

impl Bounds {
    pub const NOTHING: Self = Self {
        min: [f64::INFINITY; 2],
        max: [-f64::INFINITY; 2],
    };

    pub fn new_symmetrical(half_extent: f64) -> Self {
        Self {
            min: [-half_extent; 2],
            max: [half_extent; 2],
        }
    }

    pub fn is_finite(&self) -> bool {
        self.min[0].is_finite()
            && self.min[1].is_finite()
            && self.max[0].is_finite()
            && self.max[1].is_finite()
    }

    pub fn is_valid(&self) -> bool {
        self.is_finite() && self.width() > 0.0 && self.height() > 0.0
    }

    pub fn width(&self) -> f64 {
        self.max[0] - self.min[0]
    }

    pub fn height(&self) -> f64 {
        self.max[1] - self.min[1]
    }

    pub fn extend_with(&mut self, value: &Value) {
        self.extend_with_x(value.x);
        self.extend_with_y(value.y);
    }

    /// Expand to include the given x coordinate
    pub fn extend_with_x(&mut self, x: f64) {
        self.min[0] = self.min[0].min(x);
        self.max[0] = self.max[0].max(x);
    }

    /// Expand to include the given y coordinate
    pub fn extend_with_y(&mut self, y: f64) {
        self.min[1] = self.min[1].min(y);
        self.max[1] = self.max[1].max(y);
    }

    pub fn expand_x(&mut self, pad: f64) {
        self.min[0] -= pad;
        self.max[0] += pad;
    }

    pub fn expand_y(&mut self, pad: f64) {
        self.min[1] -= pad;
        self.max[1] += pad;
    }

    pub fn merge(&mut self, other: &Bounds) {
        self.min[0] = self.min[0].min(other.min[0]);
        self.min[1] = self.min[1].min(other.min[1]);
        self.max[0] = self.max[0].max(other.max[0]);
        self.max[1] = self.max[1].max(other.max[1]);
    }

    pub fn translate_x(&mut self, delta: f64) {
        self.min[0] += delta;
        self.max[0] += delta;
    }

    pub fn translate_y(&mut self, delta: f64) {
        self.min[1] += delta;
        self.max[1] += delta;
    }

    pub fn translate(&mut self, delta: Vec2) {
        self.translate_x(delta.x as f64);
        self.translate_y(delta.y as f64);
    }

    pub fn add_relative_margin(&mut self, margin_fraction: Vec2) {
        let width = self.width().max(0.0);
        let height = self.height().max(0.0);
        self.expand_x(margin_fraction.x as f64 * width);
        self.expand_y(margin_fraction.y as f64 * height);
    }

    pub fn range_x(&self) -> RangeInclusive<f64> {
        self.min[0]..=self.max[0]
    }

    pub fn make_x_symmetrical(&mut self) {
        let x_abs = self.min[0].abs().max(self.max[0].abs());
        self.min[0] = -x_abs;
        self.max[0] = x_abs;
    }

    pub fn make_y_symmetrical(&mut self) {
        let y_abs = self.min[1].abs().max(self.max[1].abs());
        self.min[1] = -y_abs;
        self.max[1] = y_abs;
    }
}

/// Contains the screen rectangle and the plot bounds and provides methods to transform them.
#[derive(Clone)]
pub(crate) struct ScreenTransform {
    /// The screen rectangle.
    frame: Rect,
    /// The plot bounds.
    bounds: Bounds,
    /// Whether to always center the x-range of the bounds.
    x_centered: bool,
    /// Whether to always center the y-range of the bounds.
    y_centered: bool,
}

impl ScreenTransform {
    pub fn new(frame: Rect, bounds: Bounds, x_centered: bool, y_centered: bool) -> Self {
        Self {
            frame,
            bounds,
            x_centered,
            y_centered,
        }
    }

    pub fn frame(&self) -> &Rect {
        &self.frame
    }

    pub fn bounds(&self) -> &Bounds {
        &self.bounds
    }

    pub fn translate_bounds(&mut self, mut delta_pos: Vec2) {
        if self.x_centered {
            delta_pos.x = 0.;
        }
        if self.y_centered {
            delta_pos.y = 0.;
        }
        delta_pos.x *= self.dvalue_dpos()[0] as f32;
        delta_pos.y *= self.dvalue_dpos()[1] as f32;
        self.bounds.translate(delta_pos);
    }

    /// Zoom by a relative factor with the given screen position as center.
    pub fn zoom(&mut self, zoom_factor: Vec2, center: Pos2) {
        let center = self.value_from_position(center);

        let mut new_bounds = self.bounds;
        new_bounds.min[0] = center.x + (new_bounds.min[0] - center.x) / (zoom_factor.x as f64);
        new_bounds.max[0] = center.x + (new_bounds.max[0] - center.x) / (zoom_factor.x as f64);
        new_bounds.min[1] = center.y + (new_bounds.min[1] - center.y) / (zoom_factor.y as f64);
        new_bounds.max[1] = center.y + (new_bounds.max[1] - center.y) / (zoom_factor.y as f64);

        if new_bounds.is_valid() {
            self.bounds = new_bounds;
        }
    }

    pub fn position_from_value(&self, value: &Value) -> Pos2 {
        let x = remap(
            value.x,
            self.bounds.min[0]..=self.bounds.max[0],
            (self.frame.left() as f64)..=(self.frame.right() as f64),
        );
        let y = remap(
            value.y,
            self.bounds.min[1]..=self.bounds.max[1],
            (self.frame.bottom() as f64)..=(self.frame.top() as f64), // negated y axis!
        );
        pos2(x as f32, y as f32)
    }

    pub fn value_from_position(&self, pos: Pos2) -> Value {
        let x = remap(
            pos.x as f64,
            (self.frame.left() as f64)..=(self.frame.right() as f64),
            self.bounds.min[0]..=self.bounds.max[0],
        );
        let y = remap(
            pos.y as f64,
            (self.frame.bottom() as f64)..=(self.frame.top() as f64), // negated y axis!
            self.bounds.min[1]..=self.bounds.max[1],
        );
        Value::new(x, y)
    }

    /// delta position / delta value
    pub fn dpos_dvalue_x(&self) -> f64 {
        self.frame.width() as f64 / self.bounds.width()
    }

    /// delta position / delta value
    pub fn dpos_dvalue_y(&self) -> f64 {
        -self.frame.height() as f64 / self.bounds.height() // negated y axis!
    }

    /// delta position / delta value
    pub fn dpos_dvalue(&self) -> [f64; 2] {
        [self.dpos_dvalue_x(), self.dpos_dvalue_y()]
    }

    /// delta value / delta position
    pub fn dvalue_dpos(&self) -> [f64; 2] {
        [1.0 / self.dpos_dvalue_x(), 1.0 / self.dpos_dvalue_y()]
    }

    pub fn get_aspect(&self) -> f64 {
        let rw = self.frame.width() as f64;
        let rh = self.frame.height() as f64;
        (self.bounds.width() / rw) / (self.bounds.height() / rh)
    }

    pub fn set_aspect(&mut self, aspect: f64) {
        let epsilon = 1e-5;
        let current_aspect = self.get_aspect();
        if current_aspect < aspect - epsilon {
            self.bounds
                .expand_x((aspect / current_aspect - 1.0) * self.bounds.width() * 0.5);
        } else if current_aspect > aspect + epsilon {
            self.bounds
                .expand_y((current_aspect / aspect - 1.0) * self.bounds.height() * 0.5);
        }
    }
}