1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
use approx::RelativeEq;
use num::{One, Zero};
use simba::scalar::{ClosedAdd, ClosedMul, ComplexField, RealField};
use crate::base::allocator::Allocator;
use crate::base::dimension::{Dim, DimMin};
use crate::base::storage::Storage;
use crate::base::{DefaultAllocator, Matrix, Scalar, SquareMatrix};
use crate::RawStorage;
impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
#[inline]
#[must_use]
pub fn len(&self) -> usize {
let (nrows, ncols) = self.shape();
nrows * ncols
}
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
#[inline]
#[must_use]
pub fn is_square(&self) -> bool {
let (nrows, ncols) = self.shape();
nrows == ncols
}
#[inline]
#[must_use]
pub fn is_identity(&self, eps: T::Epsilon) -> bool
where
T: Zero + One + RelativeEq,
T::Epsilon: Clone,
{
let (nrows, ncols) = self.shape();
let d;
if nrows > ncols {
d = ncols;
for i in d..nrows {
for j in 0..ncols {
if !relative_eq!(self[(i, j)], T::zero(), epsilon = eps.clone()) {
return false;
}
}
}
} else {
d = nrows;
for i in 0..nrows {
for j in d..ncols {
if !relative_eq!(self[(i, j)], T::zero(), epsilon = eps.clone()) {
return false;
}
}
}
}
for i in 1..d {
for j in 0..i {
if !relative_eq!(self[(i, j)], T::zero(), epsilon = eps.clone())
|| !relative_eq!(self[(j, i)], T::zero(), epsilon = eps.clone())
{
return false;
}
}
}
for i in 0..d {
if !relative_eq!(self[(i, i)], T::one(), epsilon = eps.clone()) {
return false;
}
}
true
}
}
impl<T: ComplexField, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
#[inline]
#[must_use]
pub fn is_orthogonal(&self, eps: T::Epsilon) -> bool
where
T: Zero + One + ClosedAdd + ClosedMul + RelativeEq,
S: Storage<T, R, C>,
T::Epsilon: Clone,
DefaultAllocator: Allocator<T, R, C> + Allocator<T, C, C>,
{
(self.ad_mul(self)).is_identity(eps)
}
}
impl<T: RealField, D: Dim, S: Storage<T, D, D>> SquareMatrix<T, D, S>
where
DefaultAllocator: Allocator<T, D, D>,
{
#[inline]
#[must_use]
pub fn is_special_orthogonal(&self, eps: T) -> bool
where
D: DimMin<D, Output = D>,
DefaultAllocator: Allocator<(usize, usize), D>,
{
self.is_square() && self.is_orthogonal(eps) && self.determinant() > T::zero()
}
#[inline]
#[must_use]
pub fn is_invertible(&self) -> bool {
self.clone_owned().try_inverse().is_some()
}
}