1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num_complex::Complex;
use std::fmt;
use crate::base::{Matrix2, Matrix3, Normed, Unit, Vector1, Vector2};
use crate::geometry::{Point2, Rotation2};
use crate::Scalar;
use simba::scalar::RealField;
use simba::simd::SimdRealField;
use std::cmp::{Eq, PartialEq};
/// A 2D rotation represented as a complex number with magnitude 1.
///
/// All the methods specific [`UnitComplex`](crate::UnitComplex) are listed here. You may also
/// read the documentation of the [`Complex`](crate::Complex) type which
/// is used internally and accessible with `unit_complex.complex()`.
///
/// # Construction
/// * [Identity <span style="float:right;">`identity`</span>](#identity)
/// * [From a 2D rotation angle <span style="float:right;">`new`, `from_cos_sin_unchecked`…</span>](#construction-from-a-2d-rotation-angle)
/// * [From an existing 2D matrix or complex number <span style="float:right;">`from_matrix`, `rotation_to`, `powf`…</span>](#construction-from-an-existing-2d-matrix-or-complex-number)
/// * [From two vectors <span style="float:right;">`rotation_between`, `scaled_rotation_between_axis`…</span>](#construction-from-two-vectors)
///
/// # Transformation and composition
/// * [Angle extraction <span style="float:right;">`angle`, `angle_to`…</span>](#angle-extraction)
/// * [Transformation of a vector or a point <span style="float:right;">`transform_vector`, `inverse_transform_point`…</span>](#transformation-of-a-vector-or-a-point)
/// * [Conjugation and inversion <span style="float:right;">`conjugate`, `inverse_mut`…</span>](#conjugation-and-inversion)
/// * [Interpolation <span style="float:right;">`slerp`…</span>](#interpolation)
///
/// # Conversion
/// * [Conversion to a matrix <span style="float:right;">`to_rotation_matrix`, `to_homogeneous`…</span>](#conversion-to-a-matrix)
pub type UnitComplex<T> = Unit<Complex<T>>;
impl<T: Scalar + PartialEq> PartialEq for UnitComplex<T> {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
(**self).eq(&**rhs)
}
}
impl<T: Scalar + Eq> Eq for UnitComplex<T> {}
impl<T: SimdRealField> Normed for Complex<T> {
type Norm = T::SimdRealField;
#[inline]
fn norm(&self) -> T::SimdRealField {
// We don't use `.norm_sqr()` because it requires
// some very strong Num trait requirements.
(self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone()).simd_sqrt()
}
#[inline]
fn norm_squared(&self) -> T::SimdRealField {
// We don't use `.norm_sqr()` because it requires
// some very strong Num trait requirements.
self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone()
}
#[inline]
fn scale_mut(&mut self, n: Self::Norm) {
self.re *= n.clone();
self.im *= n;
}
#[inline]
fn unscale_mut(&mut self, n: Self::Norm) {
self.re /= n.clone();
self.im /= n;
}
}
/// # Angle extraction
impl<T: SimdRealField> UnitComplex<T>
where
T::Element: SimdRealField,
{
/// The rotation angle in `]-pi; pi]` of this unit complex number.
///
/// # Example
/// ```
/// # use nalgebra::UnitComplex;
/// let rot = UnitComplex::new(1.78);
/// assert_eq!(rot.angle(), 1.78);
/// ```
#[inline]
#[must_use]
pub fn angle(&self) -> T {
self.im.clone().simd_atan2(self.re.clone())
}
/// The sine of the rotation angle.
///
/// # Example
/// ```
/// # use nalgebra::UnitComplex;
/// let angle = 1.78f32;
/// let rot = UnitComplex::new(angle);
/// assert_eq!(rot.sin_angle(), angle.sin());
/// ```
#[inline]
#[must_use]
pub fn sin_angle(&self) -> T {
self.im.clone()
}
/// The cosine of the rotation angle.
///
/// # Example
/// ```
/// # use nalgebra::UnitComplex;
/// let angle = 1.78f32;
/// let rot = UnitComplex::new(angle);
/// assert_eq!(rot.cos_angle(),angle.cos());
/// ```
#[inline]
#[must_use]
pub fn cos_angle(&self) -> T {
self.re.clone()
}
/// The rotation angle returned as a 1-dimensional vector.
///
/// This is generally used in the context of generic programming. Using
/// the `.angle()` method instead is more common.
#[inline]
#[must_use]
pub fn scaled_axis(&self) -> Vector1<T> {
Vector1::new(self.angle())
}
/// The rotation axis and angle in ]0, pi] of this complex number.
///
/// This is generally used in the context of generic programming. Using
/// the `.angle()` method instead is more common.
/// Returns `None` if the angle is zero.
#[inline]
#[must_use]
pub fn axis_angle(&self) -> Option<(Unit<Vector1<T>>, T)>
where
T: RealField,
{
let ang = self.angle();
if ang.is_zero() {
None
} else if ang.is_sign_positive() {
Some((Unit::new_unchecked(Vector1::x()), ang))
} else {
Some((Unit::new_unchecked(-Vector1::<T>::x()), -ang))
}
}
/// The rotation angle needed to make `self` and `other` coincide.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitComplex;
/// let rot1 = UnitComplex::new(0.1);
/// let rot2 = UnitComplex::new(1.7);
/// assert_relative_eq!(rot1.angle_to(&rot2), 1.6);
/// ```
#[inline]
#[must_use]
pub fn angle_to(&self, other: &Self) -> T {
let delta = self.rotation_to(other);
delta.angle()
}
}
/// # Conjugation and inversion
impl<T: SimdRealField> UnitComplex<T>
where
T::Element: SimdRealField,
{
/// Compute the conjugate of this unit complex number.
///
/// # Example
/// ```
/// # use nalgebra::UnitComplex;
/// let rot = UnitComplex::new(1.78);
/// let conj = rot.conjugate();
/// assert_eq!(rot.complex().im, -conj.complex().im);
/// assert_eq!(rot.complex().re, conj.complex().re);
/// ```
#[inline]
#[must_use = "Did you mean to use conjugate_mut()?"]
pub fn conjugate(&self) -> Self {
Self::new_unchecked(self.conj())
}
/// Inverts this complex number if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitComplex;
/// let rot = UnitComplex::new(1.2);
/// let inv = rot.inverse();
/// assert_relative_eq!(rot * inv, UnitComplex::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(inv * rot, UnitComplex::identity(), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use = "Did you mean to use inverse_mut()?"]
pub fn inverse(&self) -> Self {
self.conjugate()
}
/// Compute in-place the conjugate of this unit complex number.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitComplex;
/// let angle = 1.7;
/// let rot = UnitComplex::new(angle);
/// let mut conj = UnitComplex::new(angle);
/// conj.conjugate_mut();
/// assert_eq!(rot.complex().im, -conj.complex().im);
/// assert_eq!(rot.complex().re, conj.complex().re);
/// ```
#[inline]
pub fn conjugate_mut(&mut self) {
let me = self.as_mut_unchecked();
me.im = -me.im.clone();
}
/// Inverts in-place this unit complex number.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitComplex;
/// let angle = 1.7;
/// let mut rot = UnitComplex::new(angle);
/// rot.inverse_mut();
/// assert_relative_eq!(rot * UnitComplex::new(angle), UnitComplex::identity());
/// assert_relative_eq!(UnitComplex::new(angle) * rot, UnitComplex::identity());
/// ```
#[inline]
pub fn inverse_mut(&mut self) {
self.conjugate_mut()
}
}
/// # Conversion to a matrix
impl<T: SimdRealField> UnitComplex<T>
where
T::Element: SimdRealField,
{
/// Builds the rotation matrix corresponding to this unit complex number.
///
/// # Example
/// ```
/// # use nalgebra::{UnitComplex, Rotation2};
/// # use std::f32;
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_6);
/// let expected = Rotation2::new(f32::consts::FRAC_PI_6);
/// assert_eq!(rot.to_rotation_matrix(), expected);
/// ```
#[inline]
#[must_use]
pub fn to_rotation_matrix(self) -> Rotation2<T> {
let r = self.re.clone();
let i = self.im.clone();
Rotation2::from_matrix_unchecked(Matrix2::new(r.clone(), -i.clone(), i, r))
}
/// Converts this unit complex number into its equivalent homogeneous transformation matrix.
///
/// # Example
/// ```
/// # use nalgebra::{UnitComplex, Matrix3};
/// # use std::f32;
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_6);
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
/// 0.5, 0.8660254, 0.0,
/// 0.0, 0.0, 1.0);
/// assert_eq!(rot.to_homogeneous(), expected);
/// ```
#[inline]
#[must_use]
pub fn to_homogeneous(self) -> Matrix3<T> {
self.to_rotation_matrix().to_homogeneous()
}
}
/// # Transformation of a vector or a point
impl<T: SimdRealField> UnitComplex<T>
where
T::Element: SimdRealField,
{
/// Rotate the given point by this unit complex number.
///
/// This is the same as the multiplication `self * pt`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitComplex, Point2};
/// # use std::f32;
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
/// let transformed_point = rot.transform_point(&Point2::new(1.0, 2.0));
/// assert_relative_eq!(transformed_point, Point2::new(-2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn transform_point(&self, pt: &Point2<T>) -> Point2<T> {
self * pt
}
/// Rotate the given vector by this unit complex number.
///
/// This is the same as the multiplication `self * v`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitComplex, Vector2};
/// # use std::f32;
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
/// let transformed_vector = rot.transform_vector(&Vector2::new(1.0, 2.0));
/// assert_relative_eq!(transformed_vector, Vector2::new(-2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn transform_vector(&self, v: &Vector2<T>) -> Vector2<T> {
self * v
}
/// Rotate the given point by the inverse of this unit complex number.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitComplex, Point2};
/// # use std::f32;
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
/// let transformed_point = rot.inverse_transform_point(&Point2::new(1.0, 2.0));
/// assert_relative_eq!(transformed_point, Point2::new(2.0, -1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_point(&self, pt: &Point2<T>) -> Point2<T> {
// TODO: would it be useful performancewise not to call inverse explicitly (i-e. implement
// the inverse transformation explicitly here) ?
self.inverse() * pt
}
/// Rotate the given vector by the inverse of this unit complex number.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitComplex, Vector2};
/// # use std::f32;
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
/// let transformed_vector = rot.inverse_transform_vector(&Vector2::new(1.0, 2.0));
/// assert_relative_eq!(transformed_vector, Vector2::new(2.0, -1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_vector(&self, v: &Vector2<T>) -> Vector2<T> {
self.inverse() * v
}
/// Rotate the given vector by the inverse of this unit complex number.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitComplex, Vector2};
/// # use std::f32;
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
/// let transformed_vector = rot.inverse_transform_unit_vector(&Vector2::x_axis());
/// assert_relative_eq!(transformed_vector, -Vector2::y_axis(), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_unit_vector(&self, v: &Unit<Vector2<T>>) -> Unit<Vector2<T>> {
self.inverse() * v
}
}
/// # Interpolation
impl<T: SimdRealField> UnitComplex<T>
where
T::Element: SimdRealField,
{
/// Spherical linear interpolation between two rotations represented as unit complex numbers.
///
/// # Examples:
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::geometry::UnitComplex;
///
/// let rot1 = UnitComplex::new(std::f32::consts::FRAC_PI_4);
/// let rot2 = UnitComplex::new(-std::f32::consts::PI);
///
/// let rot = rot1.slerp(&rot2, 1.0 / 3.0);
///
/// assert_relative_eq!(rot.angle(), std::f32::consts::FRAC_PI_2);
/// ```
#[inline]
#[must_use]
pub fn slerp(&self, other: &Self, t: T) -> Self {
Self::new(self.angle() * (T::one() - t.clone()) + other.angle() * t)
}
}
impl<T: RealField + fmt::Display> fmt::Display for UnitComplex<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "UnitComplex angle: {}", self.angle())
}
}
impl<T: RealField> AbsDiffEq for UnitComplex<T> {
type Epsilon = T;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.re.abs_diff_eq(&other.re, epsilon.clone()) && self.im.abs_diff_eq(&other.im, epsilon)
}
}
impl<T: RealField> RelativeEq for UnitComplex<T> {
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.re
.relative_eq(&other.re, epsilon.clone(), max_relative.clone())
&& self.im.relative_eq(&other.im, epsilon, max_relative)
}
}
impl<T: RealField> UlpsEq for UnitComplex<T> {
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.re
.ulps_eq(&other.re, epsilon.clone(), max_ulps.clone())
&& self.im.ulps_eq(&other.im, epsilon, max_ulps)
}
}