1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use std::fmt;
use std::hash;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use simba::scalar::{RealField, SubsetOf};
use simba::simd::SimdRealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::storage::Owned;
use crate::base::{Const, DefaultAllocator, OMatrix, SVector, Scalar, Unit};
use crate::geometry::{AbstractRotation, Point, Translation};
/// A direct isometry, i.e., a rotation followed by a translation (aka. a rigid-body motion).
///
/// This is also known as an element of a Special Euclidean (SE) group.
/// The `Isometry` type can either represent a 2D or 3D isometry.
/// A 2D isometry is composed of:
/// - A translation part of type [`Translation2`](crate::Translation2)
/// - A rotation part which can either be a [`UnitComplex`](crate::UnitComplex) or a [`Rotation2`](crate::Rotation2).
/// A 3D isometry is composed of:
/// - A translation part of type [`Translation3`](crate::Translation3)
/// - A rotation part which can either be a [`UnitQuaternion`](crate::UnitQuaternion) or a [`Rotation3`](crate::Rotation3).
///
/// Note that instead of using the [`Isometry`](crate::Isometry) type in your code directly, you should use one
/// of its aliases: [`Isometry2`](crate::Isometry2), [`Isometry3`](crate::Isometry3),
/// [`IsometryMatrix2`](crate::IsometryMatrix2), [`IsometryMatrix3`](crate::IsometryMatrix3). Though
/// keep in mind that all the documentation of all the methods of these aliases will also appears on
/// this page.
///
/// # Construction
/// * [From a 2D vector and/or an angle <span style="float:right;">`new`, `translation`, `rotation`…</span>](#construction-from-a-2d-vector-andor-a-rotation-angle)
/// * [From a 3D vector and/or an axis-angle <span style="float:right;">`new`, `translation`, `rotation`…</span>](#construction-from-a-3d-vector-andor-an-axis-angle)
/// * [From a 3D eye position and target point <span style="float:right;">`look_at`, `look_at_lh`, `face_towards`…</span>](#construction-from-a-3d-eye-position-and-target-point)
/// * [From the translation and rotation parts <span style="float:right;">`from_parts`…</span>](#from-the-translation-and-rotation-parts)
///
/// # Transformation and composition
/// Note that transforming vectors and points can be done by multiplication, e.g., `isometry * point`.
/// Composing an isometry with another transformation can also be done by multiplication or division.
///
/// * [Transformation of a vector or a point <span style="float:right;">`transform_vector`, `inverse_transform_point`…</span>](#transformation-of-a-vector-or-a-point)
/// * [Inversion and in-place composition <span style="float:right;">`inverse`, `append_rotation_wrt_point_mut`…</span>](#inversion-and-in-place-composition)
/// * [Interpolation <span style="float:right;">`lerp_slerp`…</span>](#interpolation)
///
/// # Conversion to a matrix
/// * [Conversion to a matrix <span style="float:right;">`to_matrix`…</span>](#conversion-to-a-matrix)
///
#[repr(C)]
#[derive(Debug)]
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(serialize = "R: Serialize,
DefaultAllocator: Allocator<T, Const<D>>,
Owned<T, Const<D>>: Serialize,
T: Scalar"))
)]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(deserialize = "R: Deserialize<'de>,
DefaultAllocator: Allocator<T, Const<D>>,
Owned<T, Const<D>>: Deserialize<'de>,
T: Scalar"))
)]
pub struct Isometry<T, R, const D: usize> {
/// The pure rotational part of this isometry.
pub rotation: R,
/// The pure translational part of this isometry.
pub translation: Translation<T, D>,
}
#[cfg(feature = "abomonation-serialize")]
impl<T, R, const D: usize> Abomonation for Isometry<T, R, D>
where
T: SimdRealField,
R: Abomonation,
Translation<T, D>: Abomonation,
{
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
self.rotation.entomb(writer)?;
self.translation.entomb(writer)
}
fn extent(&self) -> usize {
self.rotation.extent() + self.translation.extent()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.rotation
.exhume(bytes)
.and_then(|bytes| self.translation.exhume(bytes))
}
}
#[cfg(feature = "rkyv-serialize-no-std")]
mod rkyv_impl {
use super::Isometry;
use crate::{base::Scalar, geometry::Translation};
use rkyv::{offset_of, project_struct, Archive, Deserialize, Fallible, Serialize};
impl<T: Scalar + Archive, R: Archive, const D: usize> Archive for Isometry<T, R, D>
where
T::Archived: Scalar,
{
type Archived = Isometry<T::Archived, R::Archived, D>;
type Resolver = (R::Resolver, <Translation<T, D> as Archive>::Resolver);
fn resolve(
&self,
pos: usize,
resolver: Self::Resolver,
out: &mut core::mem::MaybeUninit<Self::Archived>,
) {
self.rotation.resolve(
pos + offset_of!(Self::Archived, rotation),
resolver.0,
project_struct!(out: Self::Archived => rotation),
);
self.translation.resolve(
pos + offset_of!(Self::Archived, translation),
resolver.1,
project_struct!(out: Self::Archived => translation),
);
}
}
impl<T: Scalar + Serialize<S>, R: Serialize<S>, S: Fallible + ?Sized, const D: usize>
Serialize<S> for Isometry<T, R, D>
where
T::Archived: Scalar,
{
fn serialize(&self, serializer: &mut S) -> Result<Self::Resolver, S::Error> {
Ok((
self.rotation.serialize(serializer)?,
self.translation.serialize(serializer)?,
))
}
}
impl<T: Scalar + Archive, R: Archive, _D: Fallible + ?Sized, const D: usize>
Deserialize<Isometry<T, R, D>, _D> for Isometry<T::Archived, R::Archived, D>
where
T::Archived: Scalar + Deserialize<T, _D>,
R::Archived: Scalar + Deserialize<R, _D>,
{
fn deserialize(&self, deserializer: &mut _D) -> Result<Isometry<T, R, D>, _D::Error> {
Ok(Isometry {
rotation: self.rotation.deserialize(deserializer)?,
translation: self.translation.deserialize(deserializer)?,
})
}
}
}
impl<T: Scalar + hash::Hash, R: hash::Hash, const D: usize> hash::Hash for Isometry<T, R, D>
where
Owned<T, Const<D>>: hash::Hash,
{
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.translation.hash(state);
self.rotation.hash(state);
}
}
impl<T: Scalar + Copy, R: Copy, const D: usize> Copy for Isometry<T, R, D> where
Owned<T, Const<D>>: Copy
{
}
impl<T: Scalar, R: Clone, const D: usize> Clone for Isometry<T, R, D> {
#[inline]
fn clone(&self) -> Self {
Self {
rotation: self.rotation.clone(),
translation: self.translation.clone(),
}
}
}
/// # From the translation and rotation parts
impl<T: Scalar, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D> {
/// Creates a new isometry from its rotational and translational parts.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::PI);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// assert_relative_eq!(iso * Point3::new(1.0, 2.0, 3.0), Point3::new(-1.0, 2.0, 0.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn from_parts(translation: Translation<T, D>, rotation: R) -> Self {
Self {
rotation,
translation,
}
}
}
/// # Inversion and in-place composition
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D>
where
T::Element: SimdRealField,
{
/// Inverts `self`.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Point2, Vector2};
/// let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let inv = iso.inverse();
/// let pt = Point2::new(1.0, 2.0);
///
/// assert_eq!(inv * (iso * pt), pt);
/// ```
#[inline]
#[must_use = "Did you mean to use inverse_mut()?"]
pub fn inverse(&self) -> Self {
let mut res = self.clone();
res.inverse_mut();
res
}
/// Inverts `self` in-place.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Point2, Vector2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let pt = Point2::new(1.0, 2.0);
/// let transformed_pt = iso * pt;
/// iso.inverse_mut();
///
/// assert_eq!(iso * transformed_pt, pt);
/// ```
#[inline]
pub fn inverse_mut(&mut self) {
self.rotation.inverse_mut();
self.translation.inverse_mut();
self.translation.vector = self.rotation.transform_vector(&self.translation.vector);
}
/// Computes `self.inverse() * rhs` in a more efficient way.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Point2, Vector2};
/// let mut iso1 = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let mut iso2 = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_4);
///
/// assert_eq!(iso1.inverse() * iso2, iso1.inv_mul(&iso2));
/// ```
#[inline]
#[must_use]
pub fn inv_mul(&self, rhs: &Isometry<T, R, D>) -> Self {
let inv_rot1 = self.rotation.inverse();
let tr_12 = &rhs.translation.vector - &self.translation.vector;
Isometry::from_parts(
inv_rot1.transform_vector(&tr_12).into(),
inv_rot1 * rhs.rotation.clone(),
)
}
/// Appends to `self` the given translation in-place.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, Vector2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let tra = Translation2::new(3.0, 4.0);
/// // Same as `iso = tra * iso`.
/// iso.append_translation_mut(&tra);
///
/// assert_eq!(iso.translation, Translation2::new(4.0, 6.0));
/// ```
#[inline]
pub fn append_translation_mut(&mut self, t: &Translation<T, D>) {
self.translation.vector += &t.vector
}
/// Appends to `self` the given rotation in-place.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::PI / 6.0);
/// let rot = UnitComplex::new(f32::consts::PI / 2.0);
/// // Same as `iso = rot * iso`.
/// iso.append_rotation_mut(&rot);
///
/// assert_relative_eq!(iso, Isometry2::new(Vector2::new(-2.0, 1.0), f32::consts::PI * 2.0 / 3.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn append_rotation_mut(&mut self, r: &R) {
self.rotation = r.clone() * self.rotation.clone();
self.translation.vector = r.transform_vector(&self.translation.vector);
}
/// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
/// lets `p` invariant.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2, Point2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
/// let pt = Point2::new(1.0, 0.0);
/// iso.append_rotation_wrt_point_mut(&rot, &pt);
///
/// assert_relative_eq!(iso * pt, Point2::new(-2.0, 0.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<T, D>) {
self.translation.vector -= &p.coords;
self.append_rotation_mut(r);
self.translation.vector += &p.coords;
}
/// Appends in-place to `self` a rotation centered at the point with coordinates
/// `self.translation`.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2, Point2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
/// iso.append_rotation_wrt_center_mut(&rot);
///
/// // The translation part should not have changed.
/// assert_eq!(iso.translation.vector, Vector2::new(1.0, 2.0));
/// assert_eq!(iso.rotation, UnitComplex::new(f32::consts::PI));
/// ```
#[inline]
pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
self.rotation = r.clone() * self.rotation.clone();
}
}
/// # Transformation of a vector or a point
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D>
where
T::Element: SimdRealField,
{
/// Transform the given point by this isometry.
///
/// This is the same as the multiplication `self * pt`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.transform_point(&Point3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, 2.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
self * pt
}
/// Transform the given vector by this isometry, ignoring the translation
/// component of the isometry.
///
/// This is the same as the multiplication `self * v`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
self * v
}
/// Transform the given point by the inverse of this isometry. This may be
/// less expensive than computing the entire isometry inverse and then
/// transforming the point.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Point3::new(0.0, 2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
self.rotation
.inverse_transform_point(&(pt - &self.translation.vector))
}
/// Transform the given vector by the inverse of this isometry, ignoring the
/// translation component of the isometry. This may be
/// less expensive than computing the entire isometry inverse and then
/// transforming the point.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
self.rotation.inverse_transform_vector(v)
}
/// Transform the given unit vector by the inverse of this isometry, ignoring the
/// translation component of the isometry. This may be
/// less expensive than computing the entire isometry inverse and then
/// transforming the point.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::z() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.inverse_transform_unit_vector(&Vector3::x_axis());
/// assert_relative_eq!(transformed_point, -Vector3::y_axis(), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_unit_vector(&self, v: &Unit<SVector<T, D>>) -> Unit<SVector<T, D>> {
self.rotation.inverse_transform_unit_vector(v)
}
}
// NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation
// and makes it hard to use it, e.g., for Transform × Isometry implementation.
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
// explicit struct construction is prevented by the dummy ZST field).
/// # Conversion to a matrix
impl<T: SimdRealField, R, const D: usize> Isometry<T, R, D> {
/// Converts this isometry into its equivalent homogeneous transformation matrix.
///
/// This is the same as `self.to_matrix()`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Vector2, Matrix3};
/// let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
/// let expected = Matrix3::new(0.8660254, -0.5, 10.0,
/// 0.5, 0.8660254, 20.0,
/// 0.0, 0.0, 1.0);
///
/// assert_relative_eq!(iso.to_homogeneous(), expected, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn to_homogeneous(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
let mut res: OMatrix<T, _, _> = crate::convert_ref(&self.rotation);
res.fixed_slice_mut::<D, 1>(0, D)
.copy_from(&self.translation.vector);
res
}
/// Converts this isometry into its equivalent homogeneous transformation matrix.
///
/// This is the same as `self.to_homogeneous()`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Vector2, Matrix3};
/// let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
/// let expected = Matrix3::new(0.8660254, -0.5, 10.0,
/// 0.5, 0.8660254, 20.0,
/// 0.0, 0.0, 1.0);
///
/// assert_relative_eq!(iso.to_matrix(), expected, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn to_matrix(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
self.to_homogeneous()
}
}
impl<T: SimdRealField, R, const D: usize> Eq for Isometry<T, R, D> where
R: AbstractRotation<T, D> + Eq
{
}
impl<T: SimdRealField, R, const D: usize> PartialEq for Isometry<T, R, D>
where
R: AbstractRotation<T, D> + PartialEq,
{
#[inline]
fn eq(&self, right: &Self) -> bool {
self.translation == right.translation && self.rotation == right.rotation
}
}
impl<T: RealField, R, const D: usize> AbsDiffEq for Isometry<T, R, D>
where
R: AbstractRotation<T, D> + AbsDiffEq<Epsilon = T::Epsilon>,
T::Epsilon: Clone,
{
type Epsilon = T::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.translation
.abs_diff_eq(&other.translation, epsilon.clone())
&& self.rotation.abs_diff_eq(&other.rotation, epsilon)
}
}
impl<T: RealField, R, const D: usize> RelativeEq for Isometry<T, R, D>
where
R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>,
T::Epsilon: Clone,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.translation
.relative_eq(&other.translation, epsilon.clone(), max_relative.clone())
&& self
.rotation
.relative_eq(&other.rotation, epsilon, max_relative)
}
}
impl<T: RealField, R, const D: usize> UlpsEq for Isometry<T, R, D>
where
R: AbstractRotation<T, D> + UlpsEq<Epsilon = T::Epsilon>,
T::Epsilon: Clone,
{
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.translation
.ulps_eq(&other.translation, epsilon.clone(), max_ulps.clone())
&& self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
}
}
/*
*
* Display
*
*/
impl<T: RealField + fmt::Display, R, const D: usize> fmt::Display for Isometry<T, R, D>
where
R: fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
writeln!(f, "Isometry {{")?;
write!(f, "{:.*}", precision, self.translation)?;
write!(f, "{:.*}", precision, self.rotation)?;
writeln!(f, "}}")
}
}