Struct openssl::bn::BigNum [−][src]
pub struct BigNum(_);
Expand description
Dynamically sized large number implementation
Perform large number mathematics. Create a new BigNum
with new
. Perform standard mathematics on large numbers using
methods from Dref<Target = BigNumRef>
OpenSSL documentation at BN_new
.
Examples
use openssl::bn::BigNum;
let little_big = BigNum::from_u32(std::u32::MAX)?;
assert_eq!(*&little_big.num_bytes(), 4);
Implementations
Creates a new BigNum
with the value 0.
Returns a new secure BigNum
.
See OpenSSL documentation at BN_secure_new
.
Creates a new BigNum
with the given value.
OpenSSL documentation at BN_set_word
Creates a BigNum
from a decimal string.
OpenSSL documentation at BN_dec2bn
Creates a BigNum
from a hexadecimal string.
OpenSSL documentation at BN_hex2bn
Returns a constant used in IKE as defined in RFC 2409
. This prime number is in
the order of magnitude of 2 ^ 768
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled Oakley group id 1.
OpenSSL documentation at BN_get_rfc2409_prime_768
Returns a constant used in IKE as defined in RFC 2409
. This prime number is in
the order of magnitude of 2 ^ 1024
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled Oakly group 2.
OpenSSL documentation at BN_get_rfc2409_prime_1024
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 1536
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 5.
OpenSSL documentation at BN_get_rfc3526_prime_1536
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 2048
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 14.
OpenSSL documentation at BN_get_rfc3526_prime_2048
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 3072
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 15.
OpenSSL documentation at BN_get_rfc3526_prime_3072
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 4096
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 16.
OpenSSL documentation at BN_get_rfc3526_prime_4096
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 6144
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 17.
OpenSSL documentation at BN_get_rfc3526_prime_6144
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 8192
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 18.
OpenSSL documentation at BN_get_rfc3526_prime_8192
Creates a new BigNum
from an unsigned, big-endian encoded number of arbitrary length.
OpenSSL documentation at BN_bin2bn
let bignum = BigNum::from_slice(&[0x12, 0x00, 0x34]).unwrap();
assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap());
Methods from Deref<Target = BigNumRef>
Erases the memory used by this BigNum
, resetting its value to 0.
This can be used to destroy sensitive data such as keys when they are no longer needed.
OpenSSL documentation at BN_clear
Adds a u32
to self
.
OpenSSL documentation at BN_add_word
Subtracts a u32
from self
.
OpenSSL documentation at BN_sub_word
Multiplies a u32
by self
.
OpenSSL documentation at BN_mul_word
Divides self
by a u32
, returning the remainder.
OpenSSL documentation at BN_div_word
Returns the result of self
modulo w
.
OpenSSL documentation at BN_mod_word
Places a cryptographically-secure pseudo-random nonnegative
number less than self
in rnd
.
OpenSSL documentation at BN_rand_range
The cryptographically weak counterpart to rand_in_range
.
OpenSSL documentation at BN_pseudo_rand_range
Sets bit n
. Equivalent to self |= (1 << n)
.
When setting a bit outside of self
, it is expanded.
OpenSSL documentation at BN_set_bit
Clears bit n
, setting it to 0. Equivalent to self &= ~(1 << n)
.
When clearing a bit outside of self
, an error is returned.
OpenSSL documentation at BN_clear_bit
Returns true
if the n
th bit of self
is set to 1, false
otherwise.
OpenSSL documentation at BN_is_bit_set
Truncates self
to the lowest n
bits.
An error occurs if self
is already shorter than n
bits.
OpenSSL documentation at BN_mask_bits
Places a << 1
in self
. Equivalent to self * 2
.
OpenSSL documentation at BN_lshift1
Places a >> 1
in self
. Equivalent to self / 2
.
OpenSSL documentation at BN_rshift1
Places a + b
in self
. core::ops::Add
is also implemented for BigNumRef
.
OpenSSL documentation at BN_add
Places a - b
in self
. core::ops::Sub
is also implemented for BigNumRef
.
OpenSSL documentation at BN_sub
Places a << n
in self
. Equivalent to a * 2 ^ n
.
OpenSSL documentation at BN_lshift
Places a >> n
in self
. Equivalent to a / 2 ^ n
.
OpenSSL documentation at BN_rshift
Creates a new BigNum with the same value.
OpenSSL documentation at BN_dup
Sets the sign of self
. Pass true to set self
to a negative. False sets
self
positive.
Returns true
if self
is negative.
Returns the number of significant bits in self
.
OpenSSL documentation at BN_num_bits
Generates a cryptographically strong pseudo-random BigNum
, placing it in self
.
Parameters
bits
: Length of the number in bits.msb
: The desired properties of the most significant bit. Seeconstants
.odd
: Iftrue
, the generated number will be odd.
Examples
use openssl::bn::{BigNum, MsbOption};
use openssl::error::ErrorStack;
fn generate_random() -> Result< BigNum, ErrorStack > {
let mut big = BigNum::new()?;
// Generates a 128-bit odd random number
big.rand(128, MsbOption::MAYBE_ZERO, true);
Ok((big))
}
OpenSSL documentation at BN_rand
The cryptographically weak counterpart to rand
. Not suitable for key generation.
OpenSSL documentation at BN_psuedo_rand
Generates a prime number, placing it in self
.
Parameters
bits
: The length of the prime in bits (lower bound).safe
: If true, returns a “safe” primep
so that(p-1)/2
is also prime.add
/rem
: Ifadd
is set toSome(add)
,p % add == rem
will hold, wherep
is the generated prime andrem
is1
if not specified (None
).
Examples
use openssl::bn::BigNum;
use openssl::error::ErrorStack;
fn generate_weak_prime() -> Result< BigNum, ErrorStack > {
let mut big = BigNum::new()?;
// Generates a 128-bit simple prime number
big.generate_prime(128, false, None, None);
Ok((big))
}
OpenSSL documentation at BN_generate_prime_ex
pub fn checked_mul(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn checked_mul(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a * b
in self
.
core::ops::Mul
is also implemented for BigNumRef
.
OpenSSL documentation at BN_mul
pub fn checked_div(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn checked_div(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a / b
in self
. The remainder is discarded.
core::ops::Div
is also implemented for BigNumRef
.
OpenSSL documentation at BN_div
pub fn checked_rem(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn checked_rem(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a % b
in self
.
OpenSSL documentation at BN_div
pub fn div_rem(
&mut self,
rem: &mut BigNumRef,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn div_rem(
&mut self,
rem: &mut BigNumRef,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a / b
in self
and a % b
in rem
.
OpenSSL documentation at BN_div
Places the result of a²
in self
.
OpenSSL documentation at BN_sqr
pub fn nnmod(
&mut self,
a: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn nnmod(
&mut self,
a: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a mod m
in self
. As opposed to div_rem
the result is non-negative.
OpenSSL documentation at BN_nnmod
pub fn mod_add(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn mod_add(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of (a + b) mod m
in self
.
OpenSSL documentation at BN_mod_add
pub fn mod_sub(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn mod_sub(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of (a - b) mod m
in self
.
OpenSSL documentation at BN_mod_sub
pub fn mod_mul(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn mod_mul(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of (a * b) mod m
in self
.
OpenSSL documentation at BN_mod_mul
pub fn mod_sqr(
&mut self,
a: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn mod_sqr(
&mut self,
a: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a² mod m
in self
.
OpenSSL documentation at BN_mod_sqr
pub fn exp(
&mut self,
a: &BigNumRef,
p: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn exp(
&mut self,
a: &BigNumRef,
p: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a^p
in self
.
OpenSSL documentation at BN_exp
pub fn mod_exp(
&mut self,
a: &BigNumRef,
p: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn mod_exp(
&mut self,
a: &BigNumRef,
p: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a^p mod m
in self
.
OpenSSL documentation at BN_mod_exp
pub fn mod_inverse(
&mut self,
a: &BigNumRef,
n: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn mod_inverse(
&mut self,
a: &BigNumRef,
n: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the inverse of a
modulo n
in self
.
pub fn gcd(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn gcd(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the greatest common denominator of a
and b
in self
.
OpenSSL documentation at BN_gcd
Checks whether self
is prime.
Performs a Miller-Rabin probabilistic primality test with checks
iterations.
OpenSSL documentation at BN_is_prime_ex
Return Value
Returns true
if self
is prime with an error probability of less than 0.25 ^ checks
.
pub fn is_prime_fasttest(
&self,
checks: i32,
ctx: &mut BigNumContextRef,
do_trial_division: bool
) -> Result<bool, ErrorStack>
pub fn is_prime_fasttest(
&self,
checks: i32,
ctx: &mut BigNumContextRef,
do_trial_division: bool
) -> Result<bool, ErrorStack>
Checks whether self
is prime with optional trial division.
If do_trial_division
is true
, first performs trial division by a number of small primes.
Then, like is_prime
, performs a Miller-Rabin probabilistic primality test with checks
iterations.
OpenSSL documentation at BN_is_prime_fasttest_ex
Return Value
Returns true
if self
is prime with an error probability of less than 0.25 ^ checks
.
Returns a big-endian byte vector representation of the absolute value of self
.
self
can be recreated by using from_slice
.
let s = -BigNum::from_u32(4543).unwrap();
let r = BigNum::from_u32(4543).unwrap();
let s_vec = s.to_vec();
assert_eq!(BigNum::from_slice(&s_vec).unwrap(), r);
Returns a big-endian byte vector representation of the absolute value of self
padded
to pad_to
bytes.
If pad_to
is less than self.num_bytes()
then an error is returned.
self
can be recreated by using from_slice
.
let bn = BigNum::from_u32(0x4543).unwrap();
let bn_vec = bn.to_vec_padded(4).unwrap();
assert_eq!(&bn_vec, &[0, 0, 0x45, 0x43]);
let r = bn.to_vec_padded(1);
assert!(r.is_err());
let bn = -BigNum::from_u32(0x4543).unwrap();
let bn_vec = bn.to_vec_padded(4).unwrap();
assert_eq!(&bn_vec, &[0, 0, 0x45, 0x43]);
Returns a decimal string representation of self
.
let s = -BigNum::from_u32(12345).unwrap();
assert_eq!(&**s.to_dec_str().unwrap(), "-12345");
Returns a hexadecimal string representation of self
.
let s = -BigNum::from_u32(0x99ff).unwrap();
assert_eq!(&**s.to_hex_str().unwrap(), "-99FF");
Returns an Asn1Integer
containing the value of self
.
Force constant time computation on this value.
Returns true if self
is in const time mode.
Returns true if self
was created with BigNum::new_secure
.
Trait Implementations
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more